EconPapers    
Economics at your fingertips  
 

An Efficient White Shark Optimizer for Enhancing the Performance of Proton Exchange Membrane Fuel Cells

Ahmed Fathy () and Abdulmohsen Alanazi
Additional contact information
Ahmed Fathy: Electrical Engineering Department, Faculty of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
Abdulmohsen Alanazi: Electrical Engineering Department, Faculty of Engineering, Jouf University, Sakaka 72388, Saudi Arabia

Sustainability, 2023, vol. 15, issue 15, 1-21

Abstract: This study investigates the substantial contribution of the recent numerical optimization technique known as the White Shark Optimizer (WSO) to evaluate the performance of proton exchange membrane fuel cell (PEMFC) design parameters that play a considerable role in boosting its effectiveness. A numerical code was developed and implemented via MATLAB software to achieve the research goal. The proposed WSO was employed to identify the unknown parameters of the PEMFC equivalent circuit, considering experimental data. The analyzed objective function was the root mean squared error (RMSE) between the measured and estimated fuel cell terminal voltages. Additionally, the proposed WSO was compared with other intelligent approaches such as the salp swarm algorithm (SSA), Harris hawks optimization (HHO), atom search optimization (ASO), dung beetle optimization algorithm (DBOA), stochastic paint optimizer (SPO), and comprehensive learning Archimedes optimization algorithm (HCLAOA). The numerical simulations revealed that the RMSE values varied between lower and higher values of 0.009095329 and 0.028663611, respectively. Additionally, the results indicated that the mean fitness value recorded in the considered PEMFC 250 W stack was 0.020057775. Moreover, the minimum fitness value was obtained using the proposed WSO, with an operating temperature of 353.15 K and working anode and cathode pressures are 3 bar and 5 bar, respectively. The proposed WSO offered the best results in terms of absolute errors compared to the other optimizers, confirming the robustness of the results in all considered cases.

Keywords: parameter estimation; PEMFC; design parameter; MATLAB simulation; white shark optimizer; root mean squared error (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/15/11741/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/15/11741/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:15:p:11741-:d:1206447

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11741-:d:1206447