EconPapers    
Economics at your fingertips  
 

Assessment of Flood-Induced Geomorphic Changes in Sidere Creek of the Mountainous Basin Using Small UAV-Based Imagery

Mehmet Yavuz () and Mustafa Tufekcioglu
Additional contact information
Mehmet Yavuz: Department of Forest Engineering, Faculty of Forestry, Artvin Coruh University, 08100 Artvin, Türkiye
Mustafa Tufekcioglu: Department of Forest Engineering, Faculty of Forestry, Artvin Coruh University, 08100 Artvin, Türkiye

Sustainability, 2023, vol. 15, issue 15, 1-21

Abstract: Floods often cause changes in the hydro-geomorphology of riverbeds and banks. These changes need to be closely monitored to find a balance and exchange between lateral and vertical erosion and deposition, upstream local sediment supply, and a stream’s transport capacity. Low-frequency cross-sectional field surveys cannot map hard-to-reach locations. Innovative techniques, such as small unmanned aerial vehicles (UAVs), must be employed to monitor these processes. This research compared historical data with a UAV survey and the Pix4DMapper structure-from-motion (SfM) program to assess the longitudinal, lateral, and vertical changes of Sidere Creek in the eastern Black Sea, Türkiye. Digitization was undertaken using 2011–2015–2017 Google Earth photographs, 1960s topographic maps, and 2023 orthomosaics. ArcGIS 10.6 was used to delineate the centerlines (thalweg), left/right banks, alluvial bars, active channel widths, and channel confinement layers. Channel Migration Toolbox and CloudCompare were utilized for analyzing lateral and vertical morphological changes, respectively. The active channel migrated 25.57 m during 1960–2011, 15.84 m during 2011–2015, 6.96 m during 2015–2017, and 5.79 m during 2017–2023. Left-bank channel confinement rose from 2.4% to 42% and right-bank channel confinement from 5.9% to 34.8% over 63 years. Neither stream meandering nor sinuosity index changed statistically. Active channel boundary widths varied from 149.79 m to 9.46 m, averaging 37.3 m. It can be concluded that UAV surveys can precisely measure and monitor the stream channel longitudinal, lateral, and vertical morphological changes at a lower cost and in less time than previous methods.

Keywords: longitudinal profiling; stream lateral morphological changes; small UAVs (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/15/11793/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/15/11793/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:15:p:11793-:d:1207632

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11793-:d:1207632