EconPapers    
Economics at your fingertips  
 

A Parametric BIM Framework to Conceptual Structural Design for Assessing the Embodied Environmental Impact

Kitti Ajtayné Károlyfi () and János Szép
Additional contact information
Kitti Ajtayné Károlyfi: Department of Structural and Geotechnical Engineering, Széchenyi István University, H-9026 Győr, Hungary
János Szép: Department of Structural and Geotechnical Engineering, Széchenyi István University, H-9026 Győr, Hungary

Sustainability, 2023, vol. 15, issue 15, 1-23

Abstract: Decisions made in the early design stage have a significant effect on a building’s performance and environmental impact. In practice, a conceptual design is performed by an architect, while a structural engineer begins to work in later phases when the architectural concept has already evolved. However, the geometry and form of a building directly determine the type of structure and applicable materials; therefore, the conceptual design phase gives rise to examining alternative solutions. This paper presents a method for generating alternative structural solutions in the conceptual design phase and examining their embodied environmental impact by integrating parametric design and building information modeling (BIM). Rhinoceros and Grasshopper were used to develop the parametric script, which includes the generation of geometrical variations, the automatic definition of initial cross sections for the load-bearing elements based on in-built structural design approximations, the datasets for embodied environmental impact of the used building materials, the generation of life cycle inventory (LCI), the automatic calculation of life cycle assessment (LCA) results based on the geometry, and the conversion of the parametric model into building information model. The method was demonstrated using a case study of 48 different alternative solutions for an unheated warehouse made of steel frames. Based on the results, the areas with the greatest energy impact were identified. The case study analysis also illustrated that the applied cross section may have a significant effect on the impact categories. The results draw attention to the complexity of LCA calculations even in the case of a simple structure containing a limited number of variables, where parametric design can serve as an effective tool for a comprehensive environmental impact assessment.

Keywords: parametric design; building information modeling (BIM); conceptual design; structural approximation; embodied environmental impact (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/15/11990/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/15/11990/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:15:p:11990-:d:1210390

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11990-:d:1210390