Photovoltaic Power Forecast Using Deep Learning Techniques with Hyperparameters Based on Bayesian Optimization: A Case Study in the Galapagos Islands
Richard Guanoluisa,
Diego Arcos-Aviles (),
Marco Flores-Calero,
Wilmar Martinez and
Francesc Guinjoan
Additional contact information
Richard Guanoluisa: Grupo de Investigación en Propagación, Control Electrónico y Networking (PROCONET), Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui s/n, Sangolquí 171-5-231B, Ecuador
Diego Arcos-Aviles: Grupo de Investigación en Propagación, Control Electrónico y Networking (PROCONET), Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui s/n, Sangolquí 171-5-231B, Ecuador
Marco Flores-Calero: Grupo de Investigación en Propagación, Control Electrónico y Networking (PROCONET), Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui s/n, Sangolquí 171-5-231B, Ecuador
Wilmar Martinez: Department of Electrical Engineering, ESAT, KU Leuven, Agoralaan gebouw B bus 8, 3590 Diepenbeek, Belgium
Francesc Guinjoan: Department of Electronics Engineering, Escuela Técnica Superior de Ingenieros de Telecomunicación de Barcelona, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
Sustainability, 2023, vol. 15, issue 16, 1-18
Abstract:
Hydropower systems are the basis of electricity power generation in Ecuador. However, some isolated areas in the Amazon and Galapagos Islands are not connected to the National Interconnected System. Therefore, isolated generation systems based on renewable energy sources (RES) emerge as a solution to increase electricity coverage in these areas. An extraordinary case occurs in the Galapagos Islands due to their biodiversity in flora and fauna, where the primary energy source comes from fossil fuels despite their significant amount of solar resources. Therefore, RES use, especially photovoltaic (PV) and wind power, is essential to cover the required load demand without negatively affecting the islands’ biodiversity. In this regard, the design and installation planning of PV systems require perfect knowledge of the amount of energy available at a given location, where power forecasting plays a fundamental role. Therefore, this paper presents the design and comparison of different deep learning techniques: long-short-term memory (LSTM), LSTM Projected, Bidirectional LSTM, Gated Recurrent Units, Convolutional Neural Networks, and hybrid models to forecast photovoltaic power generation in the Galapagos Islands of Ecuador. The proposed approach uses an optimized hyperparameter-based Bayesian optimization algorithm to reduce the forecast error and training time. The results demonstrate the accurate performance of all the methods by achieving a low-error short-term prediction, an excellent correlation of over 99%, and minimizing the training time.
Keywords: photovoltaic power forecasting; long-short-term memory; convolutional neural network; Bayesian optimization (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/16/12151/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/16/12151/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:16:p:12151-:d:1213198
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().