GIS-Based Scientific Workflows for Automated Spatially Driven Sea Level Rise Modeling
Wenwu Tang (),
Heidi S. Hearne,
Zachery Slocum and
Tianyang Chen
Additional contact information
Wenwu Tang: Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
Heidi S. Hearne: Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
Zachery Slocum: Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
Tianyang Chen: Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
Sustainability, 2023, vol. 15, issue 17, 1-25
Abstract:
Sea level rise (SLR) poses a significant threat to shorelines and the environment in terms of flooding densely populated areas and associated coastal ecosystems. Scenario analysis is often used to investigate potential SLR consequences, which can help stakeholders make informed decisions on climate change mitigation policies or guidelines. However, SLR scenario analysis requires considerable geospatial data analytics and repetitive execution of SLR models for alternative scenarios. Having to run SLR models many times for scenario analysis studies leads to heavy computational needs as well as a large investment of time and effort. This study explores the benefits of incorporating cyberinfrastructure technologies, represented by scientific workflows and high-performance computing, into spatially explicit SLR modeling. We propose a scientific workflow-driven approach to modeling the potential loss of marshland in response to different SLR scenarios. Our study area is the central South Carolina coastal region, USA. The scientific workflow approach allows for automating the geospatial data processing for SLR modeling, while repetitive modeling and data analytics are accelerated by leveraging high-performance and parallel computing. With support from automation and acceleration, this scientific workflow-driven approach allows us to conduct computationally intensive scenario analysis experiments to evaluate the impact of SLR on alternative land cover types including marshes and tidal flats as well as their spatial characteristics.
Keywords: scientific workflow; sea level rise modeling; marshland; cyberinfrastructure (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/17/12704/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/17/12704/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:17:p:12704-:d:1222621
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().