Influence of Chemical, Organic, and Biological Silicon Fertilization on Physiological Studies of Egyptian Japonica Green Super Rice ( Oryza sativa L.)
Nehal M. Elekhtyar () and
Arwa A. AL-Huqail
Additional contact information
Nehal M. Elekhtyar: Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Sakha 33717, Kafrelsheikh, Egypt
Arwa A. AL-Huqail: Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
Sustainability, 2023, vol. 15, issue 17, 1-15
Abstract:
Rice plants are known to be silicon (Si) accumulators, hence farmers often use specific commercial chemical fertilizers to meet the nutrient needs of plants. Farmers commonly use fertilizers that are expensive and produce immediate effects, yet they contaminate the soil, water, and air. We should reduce the use of chemical fertilizers by combining a part of them with alternative organic and biological sources of Si, such as rice husk and Bacillus mucilaginosus (Si-solubilizing bacteria). Furthermore, it rationalizes chemical fertilizer consumption, reduces environmental pollution, and improves nutrient use efficiency to achieve rationalization of consumption with economic benefits in spending and rationalization of consumption of chemicals polluting the environment. In two successive growth seasons, 2021 and 2022, a field experiment was conducted to determine the effects of chemical, organic, and biological silicon fertilization in physiological studies of Egyptian Japonica green super rice. A randomized complete block design was used, with four replications, and the following treatments were used: T1, recommended dose of silica gel (SG; chemical Si); T2, recommended dose of rice husk (RH; organic Si); T3, recommended dose of Si-solubilizing bacteria (SSB; Bacillus mucilaginosus; biological Si); T4, ½ SG + ½ RH; T5, ½ SG + ½ SSB; T6, ½ RH + ½ SSB; T7, 1 / 3 SG + 1 / 3 RH + 1 / 3 SSB; T8, zero chemical, organic, and biological Si (control). The results showed that the application of silica gel as a chemical Si fertilizer, rice husk as an organic Si fertilizer, and Bacillus mucilaginosus as a Si-solubilizing bacteria or biological Si fertilizer source resulted in significantly higher yields of grain (10.71 and 10.53) t ha −1 and straw (12.66 and 12.37) t ha −1 in 2021 and 2022, respectively. Following that, silica gel, when combined with Si-solubilizing bacteria, led to increases in grain yield output of 10.32 and 10.39 t ha −1 and straw yield of 12.16 and 12.05 t ha −1 in 2021 and 2022, respectively. In addition, yield attributes, chlorophyll content in leaves, flag leaf area, flag leaf weight, chlorophyll in flag leaf, crop growth rate (CGR), relative growth rate (RGR), net assimilation rate (NAR), and silicon uptake in grain and straw were determined as follows: The application of silica gel as a chemical Si fertilizer, rice husk as an organic Si fertilizer, and Bacillus mucilaginosus as a Si-solubilizing bacteria or biological Si fertilizer source had a substantial impact on all examined characteristics. According to the optimal treatment, one part of the three parts of Si fertilization utilized just chemical Si fertilizer and the other two parts organic and biological Si. So we can minimize chemical fertilizer use and reduce soil pollution. The findings of this study will be valuable for future research, such as the usage of alternative organic and biological sources of Si in rice.
Keywords: rice; Si; silica gel; rice husk; Si-solubilizing bacteria; Bacillus mucilaginosus (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/17/12968/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/17/12968/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:17:p:12968-:d:1227124
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().