EconPapers    
Economics at your fingertips  
 

Estimating Toll Road Travel Times Using Segment-Based Data Imputation

Krit Jedwanna, Chuthathip Athan and Saroch Boonsiripant ()
Additional contact information
Krit Jedwanna: Department of Civil Engineering, Faculty of Engineering Rajamangala, University of Technology Phra Nakhon, Bangkok 10300, Thailand
Chuthathip Athan: Mobinary Company Limited, Bangkok 10400, Thailand
Saroch Boonsiripant: Department of Civil Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand

Sustainability, 2023, vol. 15, issue 17, 1-22

Abstract: Efficient and sustainable transportation is crucial for addressing the environmental and social challenges associated with urban mobility. Accurate estimation of travel time plays a pivotal role in traffic management and trip planning. This study focused on leveraging machine learning models to enhance travel time estimation accuracy on toll roads under diverse traffic conditions. Two models were developed for travel time estimation under a variety of traffic conditions on the Don Muang Tollway, Bangkok, Thailand: a long short-term memory (LSTM) recurrent neural network model and a support vector regression (SVR) model. Missing data were treated using the proposed segment-based data imputation method. Unlike other studies, the effects of missing input data on the travel time model performance were also analyzed. Traffic parameters, such as speed and flow, along with other relevant parameters (time of day, day of the week, holiday indicators, and a missing data indicator), were fed into each model to estimate travel time on each of the four specific routes. The LSTM and SVR results had similar performance levels based on evaluating the all-day pooled data. However, the mean absolute percentage errors were lower for LSTM during peak periods, while SVR performed slightly better during off-peak periods. Additionally, LSTM coped substantially better than SVR with unusual traffic fluctuations. The sensitivity analysis of the missing input data in this study also revealed that the LSTM model was more robust to the high degree of missing data than the SVR model.

Keywords: travel time estimation; long short-term memory applications; support vector regression applications; toll roads (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/17/13042/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/17/13042/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:17:p:13042-:d:1228428

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:13042-:d:1228428