EconPapers    
Economics at your fingertips  
 

Research on the Rapid Recognition Method of Electric Bicycles in Elevators Based on Machine Vision

Zhike Zhao (), Songying Li, Caizhang Wu and Xiaobing Wei
Additional contact information
Zhike Zhao: College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
Songying Li: College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
Caizhang Wu: College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
Xiaobing Wei: Henan Special Equipment Inspection Technology Research Institute, Zhengzhou 450000, China

Sustainability, 2023, vol. 15, issue 18, 1-21

Abstract: People are gradually coming around to the idea of living a low-carbon lifestyle and using green transportation, and given the severe urban traffic congestion, electric bicycle commuting has taken over as the preferred mode of short-distance transportation for many. Since batteries are used to power electric bicycles, there are no greenhouse gas emissions while they are in use, which is more in line with the requirement for sustainable development around the world. The public has been increasingly concerned about the safety issues brought on by electric bicycles as a result of the industry’s quick development and the rapid increase in the number of electric bicycles worldwide. The unsafe operation of the elevator and the safety of the building have been seriously compromised by the unauthorized admission of electric bicycles into the elevator. To meet the need for fast detection and identification of electric bicycles in elevators, we designed a modified YOLOv5-based identification approach in this study. We propose the use of the EIoU loss function to address the occlusion problem in electric bicycle recognition. By considering the interaction ratio and overlap loss of the target frames, we are able to enhance localization accuracy and reduce the missed detection rate of occluded targets. Additionally, we introduce the CBAM attention mechanism in both the backbone and head of YOLOv5 to improve the expressive power of feature maps. This allows the model to prioritize important regions of the target object, leading to improved detection accuracy. Furthermore, we utilize the CARAFE operator during upsampling instead of the nearest operator in the original model. This enables our model to recover details and side information more accurately, resulting in finer sampling results. The experimental results demonstrate that our improved model achieves an mAP of 86.35 percent, a recall of 81.8 percent, and an accuracy of 88.0 percent. When compared to the original model under the same conditions, our improved YOLOv5 model shows an average detection accuracy increase of 3.49 percent, a recall increase of 5.6 percent, and an accuracy increase of 3.5 percent. Tests in application scenarios demonstrate that after putting the model on the hardware platform Jeston TX2 NX, stable and effective identification of electric bicycles can be accomplished.

Keywords: electric bicycle identification; YOLOv5; improved upsampling operator; fusion attention mechanism; loss function (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/18/13550/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/18/13550/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:18:p:13550-:d:1237371

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13550-:d:1237371