EconPapers    
Economics at your fingertips  
 

Enhancing Thermal Performance of Autoclaved Aerated Concrete (AAC) Incorporating Sugar Sediment Waste and Recycled AAC with Phase Change Material-Coated Applications for Sustainable Energy Conservation in Building

Atthakorn Thongtha (), Somchai Maneewan and Ahmad Fazlizan
Additional contact information
Atthakorn Thongtha: Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
Somchai Maneewan: Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
Ahmad Fazlizan: Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

Sustainability, 2023, vol. 15, issue 19, 1-16

Abstract: This research focuses on the integration of waste materials derived from sugar sediment and recycled AAC into the manufacturing process of autoclaved aerated concrete (AAC) to enhance its physical, mechanical, and thermal characteristics. Furthermore, the investigation explores the prospect of augmenting the thermal efficiency of the AAC composite by applying different quantities of paraffin phase change material (PCM) coatings to its external surface. Throughout the thermal testing phase, temperature control was consistently maintained at three distinct levels: 40 °C, 50 °C, and 60 °C, facilitated by a heater serving as the thermal source. The investigation unveiled that the optimal composition encompassed a 10% by weight replacement of sand with recycled AAC content. This formulation resulted in a peak compressive strength of around 5.85 N/mm 2 , along with a maximum tobermorite phase ratio of 25.5%. The elevated strength is directly associated with the heightened crystalline nature of the tobermorite phase. The most favorable configuration incorporated a 20 g PCM-coated material, demonstrating remarkable outcomes, including an extension of the time lag by about 55%, a reduction in the decrement factor by around 56.4%, as well as a substantial reduction in room temperature of roughly 15.8% compared to standard AAC without PCM coating, all at a stable temperature of 60 °C. The integration of sustainable waste materials and PCM technology, as illustrated in this study, notably contributes to resource conservation and the advancement of energy-efficient architectural practices.

Keywords: autoclaved aerated concrete; sugar sediment waste; recycled AAC; phase change material; building insulation; sustainable construction material; energy efficiency; waste materials; time lag; compressive strength (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/19/14226/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/19/14226/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:19:p:14226-:d:1248061

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14226-:d:1248061