EconPapers    
Economics at your fingertips  
 

Research Advances in the Impacts of Biochar on the Physicochemical Properties and Microbial Communities of Saline Soils

Xia An, Qin Liu, Feixiang Pan, Yu Yao, Xiahong Luo, Changli Chen, Tingting Liu, Lina Zou, Weidong Wang, Jinwang Wang () and Xing Liu ()
Additional contact information
Xia An: Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
Qin Liu: Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
Feixiang Pan: Zhejiang Yuanye Construction Co., Ltd., Wenzhou 325005, China
Yu Yao: Zhejiang Yuanye Construction Co., Ltd., Wenzhou 325005, China
Xiahong Luo: Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
Changli Chen: Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
Tingting Liu: Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
Lina Zou: Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
Weidong Wang: College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325000, China
Jinwang Wang: Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
Xing Liu: Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China

Sustainability, 2023, vol. 15, issue 19, 1-16

Abstract: The scientific management of salinized agricultural lands and the use of undeveloped saline lands to ensure food security have become one of the most urgent tasks nowadays. Biochar contains rich carbon (C) and functional groups, and processes high alkalinity, porosity, and specific surface area (SSA). Thus, it has been widely used as an effective organic conditioner in acidic or neutral soils to improve their fertility. However, so far, the impacts of biochar application on properities of saline soils and the underlying mechanisms remain unveiled. Therefore, in this study, we focus on the investigation of the impacts of biochar on the physical, chemical, and biological properties of saline soils. We found that biochar could: (1) decrease soil bulk density (BD), increase soil porosity, promote the formation of soil aggregation and enhance the leaching of soil salts; (2) increase the cation exchange capacity (CEC) of soil, decrease the salinity of soil through ion exchange and adsorption; (3) directly act as the nutrient supplements, indirectly adsorb water and nutrients or improve nutrient availability (e.g., soil organic carbon (SOC) turnover and sequestration, nutrient cycling); and (4) improve the structure and functioning of the soil microbial community and therefore indirectly impact the C, nitrogen (N) and phosphorus (P) cycling in soil systems. However, these impacts heavily depend on the properties, the concentration of the biochar added to the soil, and the type and location of the soil. In fact, some studies have shown that the addition of biochar in soil could even increase the salinity of saline soils. Another issue is the lack of long-term and large-scale field experiments regarding the impact of biochar addition on properties of saline soils. Therefore, future studies should focus on long-term field experiments with the combination of traditional soil analytical methods and mordern molecular techniques (e.g., high-throughput sequencing, macro-genomics, and metabolomics) to comprehensively reveal the response mechanism of physicochemical properties and microbial characteristics of saline soils to exogenous biochar. Our study can provide a scientific foundation for the practical agricultural production and ecological management of biochar.

Keywords: biochar; saline soil improvement; physicochemical properties; nutrient cycling; biochar-microorganisms interaction (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/19/14439/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/19/14439/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:19:p:14439-:d:1252813

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14439-:d:1252813