EconPapers    
Economics at your fingertips  
 

Multivariate Analysis of Harvested Rainwater Quality Utilizing Sustainable Solar-Energy-Driven Water Treatment

Bisma Khalid and Abdullah Alodah ()
Additional contact information
Bisma Khalid: Faculty of Civil Engineering, University of Engineering and Technology, Lahore 54890, Pakistan
Abdullah Alodah: Department of Civil Engineering, College of Engineering, Qassim University, Buraydah 51452, Qassim, Saudi Arabia

Sustainability, 2023, vol. 15, issue 19, 1-16

Abstract: The rising importance of utilizing rainwater as a sustainable and viable alternative water source is evident amid increasing urbanization and the mounting global apprehensions about water scarcity. This research aims to develop a comprehensive and sustainable approach to rainwater treatment by effectively utilizing the recently constructed solar panels at the University of Engineering and Technology (UET) in Pakistan. The study’s distinctiveness lies in its comprehensive examination of treatment plant efficiency under various weather conditions in a water-scarce region. The main objective of this work is to maximize the harvested rainwater in order to provide safe drinking water while lessening the carbon footprint of treatment operations. The proposed University of Engineering and Technology water purification process (UETWPP) method involves a sequence of four essential rainwater filtration stages, namely aeration, absorption, sediment filtration, and finally, UV disinfection, all powered by solar energy. Water samples were collected monthly for a year to assess the quality of untreated and treated rainwater, including physical, chemical, and biological parameters. Multivariate analysis techniques were used to assess these parameters, including the Friedman test and principal component analyses. By reducing the initial set of twenty components down to the four most critical ones identified in the untreated water samples, the interrelationships among these components were investigated. The results indicate that the quality of treated water using the UETWPP process was found to be suitable for human consumption, aligning with the local standards as well as those established by the World Health Organization (WHO), highlighting the effectiveness of the process in transforming rainwater into potable water. Ultimately, this pilot project showcases the viability and economic efficiency of the proposed system, rendering it easily implementable in other regions.

Keywords: water management; rainfall harvesting; UETWPP; solar energy; multivariate analysis; sustainability (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/19/14568/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/19/14568/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:19:p:14568-:d:1255350

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14568-:d:1255350