EconPapers    
Economics at your fingertips  
 

Forecasting Worldwide Temperature from Amazon Rainforest Deforestation Using a Long-Short Term Memory Model

David Dominguez, Javier Barriuso Pastor, Odette Pantoja-Díaz and Mario González-Rodríguez ()
Additional contact information
David Dominguez: Grupo de Neurocomputación Biólogica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Javier Barriuso Pastor: Grupo de Neurocomputación Biólogica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Odette Pantoja-Díaz: Business School, Universidad Internacional del Ecuador (UIDE), Quito 170411, Ecuador
Mario González-Rodríguez: SI2Lab, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de las Américas, Quito 170124, Ecuador

Sustainability, 2023, vol. 15, issue 20, 1-17

Abstract: Biosphere–atmosphere interactions are a critical component of the Earth’s climate system. Many of these interactions are currently contributing to temperature increases and accelerating global warming. One of the main factors responsible for this is land use and land cover changes; in particular, this work models the interaction between Amazon rainforest deforestation and global temperatures. A Long Short-Term Memory (LSTM) neural network is proposed to forecast temperature trends, including mean, average minimum, and average maximum temperatures, in 20 major cities worldwide. The Amazon rainforest, often referred to as the Earth’s “lungs”, plays a pivotal role in regulating global climate patterns. Over the past two decades, this region has experienced significant deforestation, largely due to human activities. We hypothesize that the extent of deforestation in the Amazon can serve as a valuable proxy for understanding and predicting temperature changes in distant urban centers. Using a dataset that tracks cumulative deforestation from 2001 to 2021 across 297 municipalities in the Amazon rainforest, a multivariate time series model was developed to forecast temperature trends worldwide up to 2030. The input data reveal a variety of behaviors, including complex deforestation patterns. Similarly, the forecasted temperature data showcases diverse trends. While some cities are expected to exhibit a steady temperature increase, others may experience gradual changes, while some cities may undergo drastic and rapid temperature shifts. Our findings contribute to a deeper understanding of the far-reaching impacts of deforestation on global climate patterns and underscore the importance of preserving vital ecosystems like the Amazon rainforest.

Keywords: climate change; temperature forecasting; long short-term memory (LSTM); Amazon rainforest deforestation; global climate trends; environmental data analysis (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/20/15152/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/20/15152/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:20:p:15152-:d:1265210

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15152-:d:1265210