Development of Green Leather Alternative from Natural Rubber and Pineapple Leaf Fiber
Sorn Duangsuwan,
Preeyanuch Junkong,
Pranee Phinyocheep,
Sombat Thanawan and
Taweechai Amornsakchai ()
Additional contact information
Sorn Duangsuwan: Polymer Science and Technology Program, Department of Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
Preeyanuch Junkong: Polymer Science and Technology Program, Department of Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
Pranee Phinyocheep: Polymer Science and Technology Program, Department of Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
Sombat Thanawan: Rubber Technology Research Center, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
Taweechai Amornsakchai: Polymer Science and Technology Program, Department of Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
Sustainability, 2023, vol. 15, issue 21, 1-15
Abstract:
In the present research, a plant-based leather substitute material or leather alternative was developed from natural rubber (NR) and pineapple leaf fiber (PALF) using a simple process. Pineapple leaf fiber was extracted from waste pineapple leaves using a mechanical method. Untreated PALF (UPALF) and sodium hydroxide-treated PALF (TPALF) were then formed into non-woven sheets using a paper making process. PALF non-woven sheets were then coated with compounded natural rubber latex at three different NR/PALF ratios, i.e., 60/40, 50/50, and 40/60. Epoxidized natural rubber with an epoxidation level of 10% (ENR) was used as an adhesion promoter, and its content was varied at 5, 10, and 15% by weight of the total rubber. The obtained leathers were characterized in terms of tensile properties, tear strength, and hardness. The internal structure of the leathers was observed with a scanning electron microscope. Comparison of these properties was made against those reported in the literature. It was found that the leather with NR/PALF equal to 50/50 was the most satisfactory; that prepared from TPALF was softer and had greater extension at break. With the addition of ENR at 5%, the stress-strain curve of each respective leather increased significantly, and as the amount of ENR was increased to 10 and 15%, the stresses at corresponding strains dropped to lower values but remained higher than that without ENR. PALF leather prepared in this study has comparable or better properties than other alternative leathers reported in the literature and is much stronger than that made from mushrooms. Thus, this type of leather alternative offers unique characteristics of being bio-based and having a lower carbon footprint.
Keywords: natural rubber; non-woven fiber sheet; pineapple leaf fiber; leather (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/21/15400/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/21/15400/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:21:p:15400-:d:1269375
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().