EconPapers    
Economics at your fingertips  
 

An Intelligent Controller Based on Extension Theory for Batteries Charging and Discharging Control

Kuei-Hsiang Chao () and Jia-Yan Li
Additional contact information
Kuei-Hsiang Chao: Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan
Jia-Yan Li: Prospective Technology of Electrical Engineering and Computer Science, National Chin-Yi University of Technology, Taichung 41170, Taiwan

Sustainability, 2023, vol. 15, issue 21, 1-17

Abstract: The main purpose of this paper is to develop an intelligent controller for the DC-link voltage of bidirectional soft-switching converters used in the batteries with equalizing charge and discharge control. To accelerate the equalizing charge and discharge speed of batteries, the DC-link voltage controller of the bidirectional converters is designed based on extension theory. Firstly, the photovoltaic module arrays (PVMAs) are used with the intelligent maximum power point tracker (MPPT) for supplying the power to the load side. Through the bidirectional soft-switching converters, the PVMAs will be allowed to carry out the uniform charging and discharging for the storage battery in order to achieve the intended energy storage and auxiliary power supply functions. In terms of the controller design, the quantitative design techniques are utilized, by which the P-I controller parameters will be designed for the converter when attempting to achieve the same control performance at different working points. As a next step, the aforesaid parameters are used together with the extenics theory. Based on the variation in the output power of the bidirectional converter and that in the voltage of the storage battery, it allows the system to find out the intended P-I controller parameters that will be approximate to the prescribed control performance when operating under different working conditions. As a result, the P-I controller will be provided with more efficient control flexibility and control performances. Finally, actual test results demonstrated that the response time of the proposed intelligent extension controller is shortened by 3% compared to the quantitative design of the proportional–integral (P-I) controller. Based on the proposed quantitative design of an intelligent controller for uniform charging and discharging management of batteries, the sustainable utilization of renewable sources of energy can be improved. At the same time, the better economic benefit of the energy preservation system is obtained. In addition, it also prolongs the life cycle of batteries, and then enhances the reliability of the batteries.

Keywords: intelligent controller; extension theory; bidirectional soft-switching converter; quantitative design; proportional–integral (P-I) controller (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/21/15664/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/21/15664/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:21:p:15664-:d:1274994

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15664-:d:1274994