Multi-Agent Systems and Machine Learning for Wind Turbine Power Prediction from an Educational Perspective
Fatih Soygazi ()
Additional contact information
Fatih Soygazi: Department of Computer Engineering, Aydın Adnan Menderes University, Aydın 09100, Türkiye
Sustainability, 2023, vol. 15, issue 23, 1-19
Abstract:
Artificial intelligence (AI) is an umbrella term that encompasses different fields of study, and topics related to these fields are addressed separately or within the scope of AI. Multi-agent systems (MASs) and machine learning (ML) are the core concepts of AI that are taught during AI courses. The separate explanation of these core research areas is common, but the emergence of federated learning has triggered their combined usage. This paper describes a practical scenario in the energy domain where these technologies can be used together to provide a sustainable energy solution for predicting wind turbine active power production. The projects in the AI course were assigned prior to the step-by-step learning of MASs and ML. These concepts were applied using a wind turbine energy dataset collected in Turkey to predict the power production of wind turbines. The observed performance improvements, achieved by applying various agent architectures and data partitioning scenarios, indicate that boosting methods such as LightGBM yield better results even when the settings are modified. Additionally, a questionnaire about the assignments was filled out by the student groups to assess the impact of learning MASs and ML through project-based education. The application of MASs and ML in a hybrid way proves valuable for learning core concepts related to AI education, as evidenced by feedback from students.
Keywords: machine learning; multi-agent systems; artificial intelligence; education; federated learning; sustainability; wind turbine; energy (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/23/16291/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/23/16291/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:23:p:16291-:d:1287348
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().