EconPapers    
Economics at your fingertips  
 

Electrification of Last-Mile Delivery: A Fleet Management Approach with a Sustainability Perspective

Oscar Castillo () and Roberto Álvarez
Additional contact information
Oscar Castillo: Department of Industrial Engineering, Universidad Nebrija, Calle Santa Cruz de Marcenado 27, 28015 Madrid, Spain
Roberto Álvarez: Department of Industrial Engineering, Universidad Nebrija, Calle Santa Cruz de Marcenado 27, 28015 Madrid, Spain

Sustainability, 2023, vol. 15, issue 24, 1-28

Abstract: Light commercial vehicles that operate in last-mile deliveries are significant contributors to greenhouse gas emissions. For this reason, carbon footprint mitigation actions have become a key issue for companies involved in urban freight transport to put the organization in line with the future EU legislative framework. In this sense, the electrification of the delivery fleets is one of the actions carried out to improve the sustainability of transport operations. To this end, fleet managers have to explore several fleet renewal strategies over a finite planning horizon, evaluating different types of electric powertrains for light commercial vehicles. To address this concern, this paper presents a purpose-built analysis to assist and boost the fleet managers’ decisions when transitioning to electrified vans, intending to maximize cost savings and reduce corporate greenhouse gas emissions inventory. The model developed for this research work is a Multi-Objective Linear Programming analysis for the optimization of the total cost of ownership and the organizational transport-related emissions reported from all scope categories according to the Greenhouse Gas Protocol standards. This analysis is applied to three types of electric vans (battery electric, hydrogen fuel cell, and range extender hybrid electric/hydrogen fuel cell), and they are compared with an internal combustion van propelled with natural gas. From this perspective, the conducted research offers a novel approximation to fleet replacement problems considering organization emission reporting and long-term budgetary objectives for vehicles and their respective refueling infrastructure. The comprehensive numerical simulations carried out over different study scenarios in Spain demonstrate that the optimization approach not only shows effective fleet renewal strategies but also identifies critical factors that impact the fleet’s competitiveness, offering valuable insights for fleet managers and policymakers. The findings indicate that in Spain, battery electric and hydrogen range extender light commercial vehicles stand as a competitive option. Substituting a natural gas-powered van with an electrified alternative can reduce an organization’s inventory emissions by up to 77% and total costs by up to 24%. Additionally, this study also points out the influence of energy supply pathways and the emissions from relevant scope 3 categories.

Keywords: sustainable logistics; multi-objective linear programming; urban freight transport; carbon footprint; fleet replacement problem; fuel cell range extender; electric light commercial vehicles (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/24/16909/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/24/16909/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:24:p:16909-:d:1301591

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16909-:d:1301591