EconPapers    
Economics at your fingertips  
 

Predicting Soil Erosion Rate at Transboundary Sub-Watersheds in Ali Al-Gharbi, Southern Iraq, Using RUSLE-Based GIS Model

Ammar Ak. Ali, Alaa M. Al-Abbadi (), Fadhil K. Jabbar, Hassan Alzahrani () and Samie Hamad
Additional contact information
Ammar Ak. Ali: Department of Geology, College of Science, University of Basrah, Basrah 61007, Iraq
Alaa M. Al-Abbadi: Department of Geology, College of Science, University of Basrah, Basrah 61007, Iraq
Fadhil K. Jabbar: General Commission of Groundwater, Ministry of Water Resources, Baghdad 00964, Iraq
Hassan Alzahrani: Department of Geology and Geophysics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
Samie Hamad: Geological Engineering Department, Missouri University of Science and Technology, McNutt Hall, 1400 N. Bishop Ave, Rolla, MO 65401, USA

Sustainability, 2023, vol. 15, issue 3, 1-14

Abstract: The empirical soil loss model, RUSLE, was used in conjunction with remotely sensed data and geographic information system technology to delineate the soil erosion and watershed priorities in terms of conservation practices at seven boundary sub-watersheds (labeled as SW-00, SW-01, …, SW-06) between Iraq and Iran in the district of Ali Al-Gharbi, southern Iraq. The six factors of the RUSLE model, i.e., the rainfall erosivity, the soil erodibility, the slope steepness length, the crop management, and management practice, were calculated or estimated using information from different data sources such as remotely sensed data and previous studies. The results revealed that the annual soil erosion loss ranges from 0 to 1890 (tons h −1 y −1 ) with an average of 0.66 (tons h −1 y −1 ). Values of soil erosion were classified into five classes: very low, low, moderate, high, and very high. The potential soil loss in the high and very high classes ranges from 14.84 to 1890 (tons h −1 y −1 ), and these classes occupy only 27 km 2 of the study area, indicating that the soil loss is very low in the area being examined. In terms of the spatial distribution of soil loss, the northern and northeastern parts (mountains and hills) of the sub-watersheds where the slope is steeper are more likely to erode than the plain area in the southern and southeastern portions, indicating that slope, in addition to rainfall erosivity, has a dominant effect on the soil erosion rate. The study of soil erosion in the watersheds under consideration reveals that only the northern portions of the SW-00, SW-02, and SW-04 watersheds require high priority conservation plans; however, these portions are primarily located in mountain regions, making the implementation of conservation plans in these areas impractical. Due to low soil loss, other sub-watersheds, particularly SW-01, SW-03, SW-05, and SW-06, are given low priority.

Keywords: soil erosion; GIS; RUSLE model; remote sensing; Iraq (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/3/1776/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/3/1776/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:3:p:1776-:d:1038766

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1776-:d:1038766