EconPapers    
Economics at your fingertips  
 

Recognition of Commercial Vehicle Driving Cycles Based on Multilayer Perceptron Model

Xianbin Wang (), Yuqi Zhao and Weifeng Li
Additional contact information
Xianbin Wang: School of Traffic and Transportation, Northeast Forestry University, Harbin 150040, China
Yuqi Zhao: School of Traffic and Transportation, Northeast Forestry University, Harbin 150040, China
Weifeng Li: School of Traffic and Transportation, Northeast Forestry University, Harbin 150040, China

Sustainability, 2023, vol. 15, issue 3, 1-21

Abstract: In this paper, we propose a multilayer perceptron-based recognition method for driving cycles of commercial vehicles. Our method solves the problem of identifying the type of driving cycle for commercial vehicles, and improves the efficiency and sustainability of road traffic. We collect driving condition data of 106,200 km long-distance commercial vehicles to validate our method. We pre-proceed six kinds of quantitative features as the data description; these are average speed, gear ratio, and accelerator pedal opening. Our model includes an input layer, hidden layers, and an output layer. The input layer receives and processes the input as low-dimensional features. The hidden layers consist of the feature extraction module and class regression module. The output layer projects extracted features to the classification space and computes the likelihood for each type. We achieve 99.83%, 97.85%, and 99.40% on the recognition accuracy for the expressway driving cycle, the suburban road driving cycle, and the urban road driving cycle, respectively. The experimental results demonstrate that our model achieves better results than the statistical method using Naive Bayes. Moreover, our method utilizes the data more efficiently and thus gains a better generalization performance.

Keywords: driving cycle recognition; multilayer perceptron; unbalanced datasets; commercial vehicle; sustainable transportation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/3/2644/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/3/2644/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:3:p:2644-:d:1054436

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2644-:d:1054436