Proposal of a Disrupted Road Detection Method in a Tsunami Event Using Deep Learning and Spatial Data
Jun Sakamoto ()
Additional contact information
Jun Sakamoto: Faculty of Science and Technology, Kochi University, Kochi 780-8520, Japan
Sustainability, 2023, vol. 15, issue 4, 1-16
Abstract:
Tsunamis generated by undersea earthquakes can cause severe damage. It is essential to quickly assess tsunami-damaged areas to take emergency measures. In this study, I employ deep learning and develop a model using aerial photographs and road segment data. I obtained data from the aerial photographs taken after the Great East Japan Earthquake; the deep learning model used was YOLOv5. The proposed method based on YOLOv5 can determine damaged roads from aerial pictures taken after a disaster. The feature of the proposed method is to use training data from images separated by a specific range and to distinguish the presence or absence of damage related to the tsunami. The results show that the proposed method is more accurate than a comparable traditional method, which is constructed by labeling and learning the damaged areas. The highest F1 score of the traditional method was 60~78%, while the highest F1 score of the proposed method was 72~83%. The traditional method could not detect locations where it is difficult to determine the damage status from aerial photographs, such as where houses are not completely damaged. However, the proposed method was able to detect them.
Keywords: aerial photograph; deep learning; disrupted section; GIS; YOLO (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/4/2936/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/4/2936/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:4:p:2936-:d:1059491
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().