EconPapers    
Economics at your fingertips  
 

Groundwater Risk Assessment Based on DRASTIC and Special Vulnerability of Solidified/Stabilized Heavy-Metal-Contaminated Sites

Zhiyong Wei and Zifang Chi ()
Additional contact information
Zhiyong Wei: Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
Zifang Chi: Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China

Sustainability, 2023, vol. 15, issue 4, 1-18

Abstract: Solidification/stabilization technology is commonly used in the remediation of heavy-metal-contaminated sites, which reduces the leaching capacity of heavy metals, but the total amount of heavy metals in the soil is not reduced, there is still a risk of heavy metal re-release and contamination of groundwater, and the risk of groundwater contamination of solidified/stabilized heavy-metal-contaminated sites needs to be assessed. Through the analysis of the system structure of solidified/stabilized heavy-metal-contaminated sites, combined with the integration method of pollution sources—the vadose zone-aquifer, based on the DRASTIC model and the special vulnerability of the solidification/stabilization site, a groundwater pollution risk assessment index system including 4 influencing factors such as site hazard, pollutant hazard, aquifer vulnerability, and natural conditions and a total of 18 evaluation indexes was constructed. Each evaluation index was graded and assigned a scoring value combined with the Analytic Hierarchy Process (AHP) to calculate index weights. The comprehensive weights of site hazard, contaminant stability, aquifer vulnerability, and natural conditions were 0.1894, 0.3508, 0.3508, and 0.1090, respectively. The isometric method was used to classify the pollution risk into five risk levels (very low risk [0, 2), low risk [2, 4), medium risk [4, 6), high risk [6, 8), and very high risk [8, 10]), and a groundwater comprehensive index pollution risk assessment model was established. The model was applied to the actual site. The results showed that under the scenario of direct landfill of remediated soil, the comprehensive indexes of groundwater pollution risk for As and Cd were 4.55 and 4.58, respectively, both of which were medium risk. When the surrounding protective measures were supplemented, the comprehensive indexes of groundwater pollution risk for As and Cd were 3.98 and 4.02, respectively. Cd remained as medium risk and As as low risk. In both scenarios, the combined groundwater contamination risk index of Cd was greater than that of As because the contaminant stability of As was higher than that of Cd. The average percentage of aquifer vulnerability score reached 45.50%, which was higher than the weight of site inherent vulnerability of 35.08%, indicating that the original site hydrogeological conditions are fragile, groundwater is vulnerable to contamination, and the in situ landfill solidification/stabilization of soil is at risk. In order to further reduce the risk, the topographic slope was increased, thereby increasing the surface drainage capacity, which reduced the combined groundwater contamination risk index for As and Cd to 3.94 and 3.90, both of which were low risk. This study provides a new method for assessing the risk of groundwater contamination at solidified/stabilized heavy-metal-contaminated sites. It also has reference significance for selecting solidification/stabilization remediation parameters

Keywords: solidification/stabilization; heavy-metal-contaminated sites; groundwater risk assessment; DRASTIC; vulnerability (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/4/2997/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/4/2997/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:4:p:2997-:d:1060507

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2997-:d:1060507