EconPapers    
Economics at your fingertips  
 

A Comprehensive Review on the Integration of Antimicrobial Technologies onto Various Surfaces of the Built Environment

Ling Xin Yong () and John Kaiser Calautit ()
Additional contact information
Ling Xin Yong: Department of Material Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
John Kaiser Calautit: Department of Architecture and Built Environment, University of Nottingham, Nottingham NG7 2RD, UK

Sustainability, 2023, vol. 15, issue 4, 1-34

Abstract: With the recent surge in interest in microbial prevention, this review paper looks at the different antimicrobial technologies for surfaces in the built environment. Every year, more than 4 million people are at risk of dying due to acquiring a microbial infection. As per the recent COVID-19 pandemic, such infections alone increase the cost and burden to the healthcare system. Therefore, mitigating the risk of microbial infection in the built environment is one of the essential considerations in our preparedness for future pandemic situations. This is especially important for a dense population within urban cities and for indoor environments with higher concentrations of indoor contaminants due to poorer ventilation. The review assesses antimicrobial technologies developed in the last two years and their potential and suitability for implementation on surfaces within a building, and it also suggests key considerations when developing these technologies for a built environment. The keywords in the main search include “antimicrobial”, “coating”, and “surfaces”. The work found various studies describing the potential use of antimicrobial technologies for different material surfaces. Still, a more thorough investigation and upscaling of work are required to assess their suitability for built environment applications. The widely diverse types of built environments in public areas with their varying purpose, design, and surfaces also mean that there is no “one-size-fits-all” solution for every space. In order to improve the adoption and consideration of antimicrobial surfaces, the built environment industry and stakeholders could benefit from more in-depth and long-term evaluation of these antimicrobial technologies, which demonstrate their real-time impact on various built environment spaces.

Keywords: antimicrobial; buildings; coating; COVID-19; surface; materials (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/4/3394/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/4/3394/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:4:p:3394-:d:1066581

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3394-:d:1066581