Complexity, Crash and Collapse of Chaos: Clues for Designing Sustainable Systems, with Focus on Grassland-Based Systems
Johannes B. (Hans) Schiere () and
Pablo Gregorini
Additional contact information
Johannes B. (Hans) Schiere: La Ventana, Steenwijkerweg 201, 8335 LG Witte Paarden, The Netherlands
Pablo Gregorini: Faculty of Agricultural and Life Sciences, Lincoln University, P.O. Box 85084, Christchurch 7647, New Zealand
Sustainability, 2023, vol. 15, issue 5, 1-43
Abstract:
Terms such as system crash, collapse of chaos and complexity can help one understand change, also in biological, socio-economic and technical systems. These terms need, however, explanation for fruitful dialogue on design of sustainable systems. We start this paper on Grass Based (GB) systems, therefore, dwelling on these terms and notions as review for the insiders and to help interested ‘outsiders’. We also stress the need to use additional and/or new paradigms for understanding of the nature of nature. However, we show that many such ‘new’ paradigms were known for long time around the globe among philosophers and common men, giving reason to include quotes and examples from other cultures and eras. In the past few centuries, those paradigms have become hidden, perhaps, under impressive but short-term successes of more linear paradigms. Therefore, we list hang-ups on paradigms of those past few centuries. We then outline what is meant by ‘GB systems’, which exist in multiple forms/‘scapes’. Coping with such variation is perhaps the most central aspect of complexity. To help cope with this variation, the different (GB) systems can be arranged on spatial, temporal, and other scales in such a way that the arrangements form logical sequences (evolutions) of stable states and transitions of Complex Adaptive Systems (CAS). Together with other ways to handle complexity, we give examples of such arrangements to illustrate how one can (re-)imagine, (re-)cognize and manage initial chaotic behaviors and eventual ‘collapse’ of chaos into design and/or emergence of new systems. Then, we list known system behaviors, such as predator–prey cycles, adaptive cycles, lock-in, specialization and even tendency to higher (or lower) entropy. All this is needed to understand changes in management of evolving GB into multi-scapes. Integration of disciplines and paradigms indicates that a win-win is likely to be exception rather than rule. With the rules given in this paper, one can reset teaching, research, rural development, and policy agendas in GB-systems and other areas of life.
Keywords: grazing; pastoral; scapes; paradigms; learning; complexity (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/5/4356/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/5/4356/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:5:p:4356-:d:1084083
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().