EconPapers    
Economics at your fingertips  
 

Spatial Differentiation Characteristics of Rural Areas Based on Machine Learning and GIS Statistical Analysis—A Case Study of Yongtai County, Fuzhou City

Ziyuan Wang ()
Additional contact information
Ziyuan Wang: School of Public Affairs, Xiamen University, Xiamen 361005, China

Sustainability, 2023, vol. 15, issue 5, 1-18

Abstract: With the development of machine learning and GIS (geographic information systems) technology, it is possible to combine them to mine the knowledge rules behind massive spatial data. GIS, also known as geographic information systems, is a comprehensive discipline, which combines geography and cartography and has been widely used in different fields. It is a computer system for inputting, storing, querying, analyzing, and displaying geographic data. This paper mainly studies the spatial differentiation characteristics of rural areas based on machine learning (ML) and GIS statistical analysis. This paper studies 21 township units in Yongtai County. In this paper, ENVI remote sensing image processing software is used to carry out the geometric correction of Landsat-8 remote sensing data. ML is multidisciplinary and interdisciplinary, involving probability theory, statistics, approximation theory, convex analysis, algorithm complexity theory, and other disciplines. It is specialized in studying how computers simulate or realize human learning behavior to obtain new knowledge or skills, and reorganize existing knowledge structures to continuously improve its own performance. The purpose of using band fusion is to provide more data information for the study and improve the accuracy of land classification results. Through the extraction of evaluation elements, this paper preliminarily confirms the evaluation index object of a rural human settlement environment evaluation system from the perspective of spatial layout rationality. This paper uses a VMD-GWO-ELM-based three-stage evolutionary extreme learning machine evaluation method to simulate the model. In the same way, when the model is trained again, extra weight is given to extract the feature points to reduce the similarity. Experimental data show that GWO-SVM has good classification performance, with the cross-validation rate reaching 91.66% and the recognition rate of test samples reaching 82.41%. The results show that GIS statistics can provide a reference for environmental protection, which is conducive to land-use planning, implementation of environmental impact assessment of land-use planning, and ultimately achieving sustainable development.

Keywords: machine learning; GIS statistical analysis; spatial differentiation feature; prediction model (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/5/4367/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/5/4367/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:5:p:4367-:d:1084189

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4367-:d:1084189