Optimal Time Phase Identification for Apple Orchard Land Recognition and Spatial Analysis Using Multitemporal Sentinel-2 Images and Random Forest Classification
Yuxiang Yan,
Xiaoying Tang,
Xicun Zhu () and
Xinyang Yu ()
Additional contact information
Yuxiang Yan: College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
Xiaoying Tang: College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
Xicun Zhu: College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
Xinyang Yu: College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
Sustainability, 2023, vol. 15, issue 6, 1-19
Abstract:
The significance of identifying apple orchard land and monitoring its spatial distribution patterns is increasing for precise yield prediction and agricultural sustainable development. This study strived to identify the optimal time phase to efficiently extract apple orchard land and monitor its spatial characteristics based on the random forest (RF) classification method and multitemporal Sentinel-2 images. Firstly, the Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Ratio Vegetation Index (RVI), and Difference Vegetation Index (DVI) between apple orchard land and other green vegetation (other orchards, forest and grassland) during the growing stage were calculated and compared to identify the optimal time phase for apple orchard land extraction; the RF classifier was then constructed using multifeature variables on Google Earth Engine to efficiently identify apple orchard land, and the support vector machine (SVM) classification results were used as a comparison; GIS spatial analysis, a slope calculation model, and Moran’s I and Getis-Ord GI* analysis were employed to further analyze the spatial patterns of the apple orchard land. The results found the following: (1) April, May, and October were the optimal time phases for apple orchard identification. (2) The RF-based method combining coefficients of indexes, the grayscale co-occurrence matrix, and 70% of the ground reference data can precisely classify apple orchards with an overall accuracy of 90% and a Kappa coefficient of 0.88, increasing by 9.2% and 11.4% compared to those using the SVM. (3) The total area of apple orchard land in the study area was 485.8 km 2 , which is 0.6% less than the government’s statistical results. More than half (55.7%) of the apple orchard land was distributed on the gentle slope (Grade II, 6–15°) and the flat slope (Grade I, 0–5°); SiKou, Songshan, and Shewopo contained more than 50% of the total orchard land area. (4) The distribution of apple orchard land has a positive spatial autocorrelation (0.309, p = 0.000). High–High cluster types occurred mainly in Sikou (60%), High–Low clusters in Songshan (40%), Low–High clusters in Sikou (47.5%), and Low–Low clusters in Taocun and Tingkou (37.4%). The distribution patterns of cold and hot spots converged with those of the Local Moran Index computation results. The findings of this study can provide theoretical and methodological references for orchard land identification and spatial analysis.
Keywords: random forest classifier; Google Earth Engine; orchard land identification; support vector machine; vegetation index; spatial analysis (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/6/4695/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/6/4695/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:6:p:4695-:d:1089513
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().