Predictive Modeling of Recycled Aggregate Concrete Beam Shear Strength Using Explainable Ensemble Learning Methods
Celal Cakiroglu and
Gebrail Bekdaş ()
Additional contact information
Celal Cakiroglu: Department of Civil Engineering, Turkish-German University, Istanbul 34820, Turkey
Gebrail Bekdaş: Department of Civil Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey
Sustainability, 2023, vol. 15, issue 6, 1-21
Abstract:
Construction and demolition waste (CDW) together with the pollution caused by the production of new concrete are increasingly becoming a burden on the environment. An appealing strategy from both an ecological and a financial point of view is to use construction and demolition waste in the production of recycled aggregate concrete (RAC). However, past studies have shown that the currently available code provisions can be unconservative in their predictions of the shear strength of RAC beams. The current study develops accurate predictive models for the shear strength of RAC beams based on a dataset of experimental results collected from the literature. The experimental database used in this study consists of full-scale four-point flexural tests. The recycled coarse aggregate (RCA) percentage, compressive strength ( f c ′ ), effective depth ( d ), width of the cross-section ( b ), ratio of shear span to effective depth ( a / d ), and ratio of longitudinal reinforcement ( ρ w ) are the input features used in the model training. It is demonstrated that the proposed machine learning models outperform the existing code equations in the prediction of shear strength. State-of-the-art metrics of accuracy, such as the coefficient of determination ( R 2 ), mean absolute error, and root mean squared error, have been utilized to quantify the performances of the ensemble machine learning models. The most accurate predictions could be obtained from the XGBoost model, with an R 2 score of 0.94 on the test set. Moreover, the impact of different input features on the machine learning model predictions is explained using the SHAP algorithm. Using individual conditional expectation plots, the variation of the model predictions with respect to different input features has been visualized.
Keywords: recycled aggregate concrete; shear strength; machine learning; XGBoost; SHAP (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/6/4957/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/6/4957/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:6:p:4957-:d:1093732
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().