EconPapers    
Economics at your fingertips  
 

Multi-Layered Projected Entangled Pair States for Image Classification

Lei Li and Hong Lai ()
Additional contact information
Lei Li: School of Computer and Information Science, Southwest University, Chongqing 400715, China
Hong Lai: School of Computer and Information Science, Southwest University, Chongqing 400715, China

Sustainability, 2023, vol. 15, issue 6, 1-15

Abstract: Tensor networks have been recognized as a powerful numerical tool; they are applied in various fields, including physics, computer science, and more. The idea of a tensor network originates from quantum physics as an efficient representation of quantum many-body states and their operations. Matrix product states (MPS) form one of the simplest tensor networks and have been applied to machine learning for image classification. However, MPS has certain limitations when processing two-dimensional images, meaning that it is preferable for an projected entangled pair states (PEPS) tensor network with a similar structure to the image to be introduced into machine learning. PEPS tensor networks are significantly superior to other tensor networks on the image classification task. Based on a PEPS tensor network, this paper constructs a multi-layered PEPS (MLPEPS) tensor network model for image classification. PEPS is used to extract features layer by layer from the image mapped to the Hilbert space, which fully utilizes the correlation between pixels while retaining the global structural information of the image. When performing classification tasks on the Fashion-MNIST dataset, MLPEPS achieves a classification accuracy of 90.44%, exceeding tensor network models such as the original PEPS. On the COVID-19 radiography dataset, MLPEPS has a test set accuracy of 91.63%, which is very close to the results of GoogLeNet. Under the same experimental conditions, the learning ability of MLPEPS is already close to that of existing neural networks while having fewer parameters. MLPEPS can be used to build different network models by modifying the structure, and as such it has great potential in machine learning.

Keywords: tensor networks; image classification; multi-layered projected entangled pair states (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/6/5120/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/6/5120/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:6:p:5120-:d:1096701

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5120-:d:1096701