EconPapers    
Economics at your fingertips  
 

Optimal Allocation and Sizing of Distributed Generation Using Interval Power Flow

Wallisson C. Nogueira, Lina P. Garcés Negrete and Jesús M. López-Lezama ()
Additional contact information
Wallisson C. Nogueira: Electrical, Mechanical and Computer Engineering School, Federal University of Goiás, Av. Universitária No. 1488, Goiânia 74605-010, Brazil
Lina P. Garcés Negrete: Electrical, Mechanical and Computer Engineering School, Federal University of Goiás, Av. Universitária No. 1488, Goiânia 74605-010, Brazil
Jesús M. López-Lezama: Grupo en Manejo Eficiente de la Energía (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia

Sustainability, 2023, vol. 15, issue 6, 1-24

Abstract: Modern distribution systems and microgrids must deal with high levels of uncertainty in their planning and operation. These uncertainties are mainly due to variations in loads and distributed generation (DG) introduced by new technologies. This scenario brings new challenges to planners and system operators that need new tools to perform more assertive analyses of the grid state. This paper presents an optimization methodology capable of considering uncertainties in the optimal allocation and sizing problem of DG in distribution networks. The proposed methodology uses an interval power flow (IPF) that adds uncertainties to the combinatorial optimization problem in charge of sizing and allocating DG units in the network. Two metaheuristics were implemented for comparative purposes, namely, symbiotic organism search (SOS) and particle swarm optimization (PSO). The proposed methodology was implemented in Python ® using as benchmark distribution systems the IEEE 33-bus and IEEE 69-bus test distribution networks. The objective function consists of minimizing technical losses and regulating network voltage levels. The results obtained from the proposed IPF on the tested networks are compatible with those obtained by the PPF, thus evidencing the robustness and applicability of the proposed method. For the solution of the optimization problem, the SOS metaheuristic proved to be robust, since it was able to find the best solutions (lowest losses) while keeping voltage levels within the predetermined range. On the other hand, the PSO metaheuristic showed less satisfactory results, since for all test systems, the solutions found were of lower quality than the ones found by the SOS.

Keywords: distributed generation; distribution networks; interval power flow; metaheuristic optimization; uncertainty (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/6/5171/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/6/5171/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:6:p:5171-:d:1097379

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5171-:d:1097379