Proposed Method for the Design of Geosynthetic-Reinforced Pile-Supported (GRPS) Embankments
Rashad Alsirawan (),
Edina Koch and
Ammar Alnmr
Additional contact information
Rashad Alsirawan: Department of Structural and Geotechnical Engineering, Széchenyi István University, 9026 Győr, Hungary
Edina Koch: Department of Structural and Geotechnical Engineering, Széchenyi István University, 9026 Győr, Hungary
Ammar Alnmr: Department of Structural and Geotechnical Engineering, Széchenyi István University, 9026 Győr, Hungary
Sustainability, 2023, vol. 15, issue 7, 1-20
Abstract:
Soft soils with unfavorable properties can be improved using various ground-improvement methods. Among these methods, geosynthetic-reinforced pile-supported (GRPS) embankments are considered a reliable option for challenging ground conditions and time-bound projects. Nevertheless, the intricate load transfer mechanism of the GRPS embankment presents challenges due to the multiple interactions among its components. To overcome the limitations of current design methods that do not fully account for all interactions, a simplified design method has been developed for GRPS embankments. This method uses numerical analysis to predict pile load efficiency and geosynthetic tension. In this study, a validated model of the GRPS embankment, which incorporates certain simplifications for design purposes, was adopted. Based on this simplified model, a database of load efficiency and geosynthetic tension was collected to derive the design equations. The design method employed six parameters, namely, pile cap width, pile spacing, embankment height, oedometric modulus of the subsoil, geosynthetic stiffness, and embankment fill unit weight. The design process utilized Plaxis 3D and Curve Expert software. The results showed reasonable agreement between the findings of the proposed design method and the field measurements of eight case studies.
Keywords: simplified design method; load efficiency; geosynthetic tension; geosynthetic-reinforced pile-supported embankments (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/7/6196/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/7/6196/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:7:p:6196-:d:1115675
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().