Analysis of Urban Ecological Quality Spatial Patterns and Influencing Factors Based on Remote Sensing Ecological Indices and Multi-Scale Geographically Weighted Regression
Pan Yang,
Xinxin Zhang () and
Lizhong Hua
Additional contact information
Pan Yang: College of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China
Xinxin Zhang: College of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China
Lizhong Hua: College of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China
Sustainability, 2023, vol. 15, issue 9, 1-18
Abstract:
With the acceleration of urbanization, problems such as urban ecological environment quality have become increasingly prominent. How to scientifically analyze and evaluate the spatial pattern of urban ecological environment changes and influential variables is a prerequisite for achieving green development and ecological priority new in urban planning. Our study was conducted on Pingtan Island, located in Fujian Province, China. First, we selected Landsat 8 OLI images in 2013, 2017, and 2021. Second, we extracted the remote sensing ecological index ( RSEI ) from these images and created RSEI maps to assess the spatial-temporal variations and spatial autocorrelation of the ecological environment condition in Pingtan Island. Third, the proportion of land-use types, road, and population density were selected as independent variable factors, RSEI as the dependent variable, least squares regression (OLS), geographically weighted regression (GWR), and multi-scale geographically weighted regression (MGWR) were used to establish global and local regression models. According to the regression coefficients of the model and its spatial distribution, the spatial heterogeneity between the ecological environment and the influencing factors was assessed. The results indicated that: (1) the mean value of the RSEI increased from 0.422 to 0.504 during 2013–2021, indicating that the overall ecological environment improved. (2) Based on the global Moran’s I value, the distribution of ecological environment quality was positively correlated. The local Moran’s I cluster map showed that the high-high cluster gradually extended to the northwest high-altitude region. Low-low clustering gradually extended to the more populous areas in the southeast. (3) The R a d j 2 of the MGWR model was 0.866, which was better than the results of the OLS model and GWR model, indicating that MGWR had obvious advantages in revealing the spatial heterogeneity between the ecological environment and the influencing factors. Importantly, the results indicate that population density, road density, and the proportion of cropland land and impervious surface in land-use types have varying degrees of negative effects on the urban ecological environment, with the impervious surface being more severe, followed by population density, while forest land in land-use types shows significant positive effects.
Keywords: ecological quality evaluation; remote sensing ecological index; spatial heterogeneity; MGWR model (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/9/7216/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/9/7216/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:9:p:7216-:d:1133438
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().