EconPapers    
Economics at your fingertips  
 

A Simplified Model of the HVDC Transmission System for Sub-Synchronous Oscillations

Yanwen Wang, Lingjie Wu () and Shaoyang Chen
Additional contact information
Yanwen Wang: School of Mechanical Electronic and Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
Lingjie Wu: School of Mechanical Electronic and Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
Shaoyang Chen: School of Mechanical Electronic and Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

Sustainability, 2023, vol. 15, issue 9, 1-15

Abstract: As the installed capacity of the power system is scaled up and the distance of transmission increases constantly, high-voltage direct current (HVDC) transmission technology has been widely applied across the power system. The HVDC system can lead to sub-synchronous oscillations (SSO) in the turbine and new energy generation systems. When the SSO caused by HVDC are studied through small signal analysis, it is usually necessary to establish the detailed state space model and electromagnetic transient model, which shows various disadvantages such as the high complexity of the model, the high order of the state space matrix, the complex calculation of eigenvalues, and the slow pace of simulation. In the present study, a simplified model intended for the HVDC transmission system is proposed, which can be used to simplify the calculation model and accelerate the simulation by omitting the high-frequency component and simultaneously keeping the sub-synchronous frequency component unchanged. The time domain simulation method is used to compare the dynamic response of the proposed simplified simulation model with that of the original detailed model, and the accuracy of the proposed model is demonstrated. The proposed simplified simulation model is applied to explore the SSO of wind-thermal power bundling in the HVDC transmission system. Additionally, the simulation results of SSO are compared by using the simplified model and the detailed model; the results of which demonstrate the effectiveness and rapidity of the simplified simulation model. The simplified model proposed can greatly improve the efficiency of SSO risk assessment. By selecting reasonable types and parameters of new energy units, SSO of the system can be avoided under risky operation mode, and the power grid operation mode can be monitored and adjusted to ensure the safe operation of the system. Finally, it can promote the sustainable development of the power system.

Keywords: HVDC transmission; sub-synchronous oscillation; system modeling; equivalent simplified model; eigenvalue analysis (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/9/7444/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/9/7444/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:9:p:7444-:d:1137614

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7444-:d:1137614