EconPapers    
Economics at your fingertips  
 

Emission Quantification for Sustainable Heavy-Duty Transportation

Norbert Biró () and Péter Kiss
Additional contact information
Norbert Biró: IBIDEN Hungary Kft. Technical Center, Exhaust System Evaluation, 2336 Dunavarsány, Hungary
Péter Kiss: Department of Vehicle Technology, Institute of Technology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary

Sustainability, 2023, vol. 15, issue 9, 1-13

Abstract: Vehicles equipped with internal combustion engines (ICE) are major contributors to greenhouse gas (GHG) emissions and dependence on fossil fuels. Alternatives such as electric, hydrogen fuel cell and biofuel-based propulsions are being considered as a replacement for the well-established ICE vehicles to reduce GHG emissions and provide sustainable transportation. This paper will compare various heavy-duty vehicle (HDV) propulsion combinations using a well-to-wheel (WTW) analysis, separated into two parts: Well-to-Tank (WTT) and Tank-to-Wheel (TTW). The WTW analysis of ICE HDV is based on a Euro VI heavy-duty test engine coupled to an engine dynamometer. The energy consumption and GHG emissions are measured, not estimated, providing a closer to real-life comparison. The paper will provide a detailed comparison of alternative propulsions to the internal combustion engine based on WTW analysis. Final results suggest, even with the EU’s fairly fossil energy carrier-dependent energy mix, the usage of electric propulsion systems can reach up to 56% of GHG emission cut compared to conventional ICE.

Keywords: sustainable transportation; greenhouse gases; emission quantification; well-to-wheel analyses (WTW); BEV; FCEV; Vecto tool (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/9/7483/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/9/7483/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:9:p:7483-:d:1138310

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7483-:d:1138310