EconPapers    
Economics at your fingertips  
 

Urban Traffic Accident Features Investigation to Improve Urban Transportation Infrastructure Sustainability by Integrating GIS and Data Mining Techniques

Khanh Giang Le, Quang Hoc Tran () and Do Van Manh
Additional contact information
Khanh Giang Le: Faculty of Civil Engineering, University of Transport and Communications, No. 3 Cau Giay Street, Lang Thuong Ward, Dong Da District, Hanoi, Vietnam
Quang Hoc Tran: Faculty of Civil Engineering, University of Transport and Communications, No. 3 Cau Giay Street, Lang Thuong Ward, Dong Da District, Hanoi, Vietnam
Do Van Manh: Faculty of Civil Engineering, University of Transport and Communications, No. 3 Cau Giay Street, Lang Thuong Ward, Dong Da District, Hanoi, Vietnam

Sustainability, 2023, vol. 16, issue 1, 1-19

Abstract: Urban traffic accidents pose significant challenges to the sustainability of transportation infrastructure not only in Vietnam but also all over the world. To decrease the frequency of accidents, it is crucial to analyze accident data to determine the relationship between accidents and causes, especially for serious accidents. This study suggests an integrated approach using Geographic Information System (GIS) and Data Mining methods to investigate the features of urban traffic accidents in Hanoi, Vietnam aiming to solve these challenges and enhance the safety and efficiency of urban transportation. Firstly, the dataset was segmented into homogenous clusters using the two-step cluster method. Secondly, the correlation between causes and traffic accidents was examined on the overall dataset as well as on each cluster using the association rule mining (ARM) technique. Finally, the location of accident groups and high-frequency sites of accidents (hotspots) were determined by using GIS techniques. As a result, a five-cluster model was created, which corresponded to five common accident groupings in Hanoi. Moreover, the results of the study also identified the types of accidents, the main causes, the time, and the surrounding areas corresponding to each accident group. In detail, cluster 5 depicted accidents on streets, provincial, and national roads caused by motorbikes making up the highest percentage within the groups, accounting for 29.2%. Speeding and driving in the wrong lane in the afternoon and at night were the main causes in this cluster ( C f ≥ 0.9 and L t ≥ 1.22). Next, cluster 2 had the second-highest proportion. Cluster 2 presented accidents between a truck/car and a motorbike on national and provincial roads, accounting for 27.8%. Cluster 1 presented accidents between a truck/car and a motorbike on local streets, accounting for 22%. Cluster 3 illustrated accidents between two motorbikes on the country lanes, accounting for 12.3%. Finally, cluster 4 depicted single-vehicle motorbike crashes, with the lowest rate of 8.8%. More importantly, this study also recommended using repeatability criteria for the same type of accidents or causes to determine the location of hotspots. Also, suggestions for improving traffic infrastructure sustainability were proposed. To our knowledge, this is the first time in which these three methods are applied simultaneously for analyzing traffic accidents.

Keywords: traffic accident (TA); hotspots; geographic information system (GIS); association rule mining (ARM); clusters; sustainability (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/1/107/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/1/107/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2023:i:1:p:107-:d:1305056

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:107-:d:1305056