Morpho-Hydrological Analysis and Preliminary Flash Flood Hazard Mapping of Neom City, Northwestern Saudi Arabia, Using Geospatial Techniques
Bashar Bashir () and
Abdullah Alsalman
Additional contact information
Bashar Bashir: Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
Abdullah Alsalman: Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
Sustainability, 2023, vol. 16, issue 1, 1-20
Abstract:
Neom city is a unique cross-border city connecting Saudi Arabia, Jordan, and Egypt. Although Neom city is of great and critical importance for Saudi Arabia, few hydrological, natural hazard, and geomorphological studies have been undertaken on this region. This work aims to investigate the hydro-geomorphological characteristics and assess the flash flood hazards in Neom city by investigating several valuable morphometric parameters. The Shutter Radar Topography Mission (SRTM) digital elevation model and hydrological and geological data were analyzed in this study using ArcGIS software. Based on the morphometric parameter results, total stream lengths and stream orders were relatively high (17,956.03 km and 5, respectively), whereas the average bifurcation ratio was recorded to be low at 3.54. Basins 10, 12, 17, 30, 31, 32, and 34 were described as large basins, coarse-textured, elongated, with a medium drainage density, low infiltration values, long overland flows, and high values of constant maintenance. Additionally, the El-Shamy approach for flood hazard assessment was applied side by side with the morphometric analysis, which indicated that the possibility of an intense flood hazard is very low. In general, this study suggests that most of the studied basins cover similar and resistant rocks and soils. They have minimal conditions for flooding events and suitable conditions for underground and surface water resources. Therefore, they display high signals of susceptibility to erosion. The morphometric analysis and flash flood assessment techniques applied in this study were time- and cost-effective for the morphometric characterization of landforms. This text deals with the analysis of several environmental characteristics including hydro-morphological characteristics, drainage topography and lithology, soil erosion, groundwater recharge impact, and flash flood signals. Excellent sustainability plans should be reliant on extensive and varied information about the environment. Thus, integrated analyses incorporating environmental characteristics and flood hazard assessment play an important role in adjusting and adapting the suitable socioeconomic and scientific sustainability of the development of the study city. They build up the basic and essential information required to help decision-makers and sustainability managers design and adjust the most suitable sustainability plans for the study city over the long term.
Keywords: morphometric analysis; geospatial analysis; digital elevation model; Neom city; Red Sea; Saudi Arabia (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/16/1/23/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/1/23/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2023:i:1:p:23-:d:1303123
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().