Data-Driven Approach for Selecting Mechanical Rebar Couplers Based on the Shape and Structural Characteristics of Reinforcing Bars for Sustainable Built Environment
Jeeyoung Lim and
Sunkuk Kim ()
Additional contact information
Jeeyoung Lim: Department of Architectural Engineering, Kyung Hee University, Giheung-gu, Yongin-si 17104, Republic of Korea
Sunkuk Kim: Department of R and D, Earth Turbine Co., Ltd., Dong-gu, Daegu 41057, Republic of Korea
Sustainability, 2024, vol. 16, issue 10, 1-22
Abstract:
Lap splices are the most commonly used method worldwide because they do not require specific equipment or skilled workers. However, lap splices incur high construction costs because of the long splice lengths required for large-diameter rebars in megastructures, as well as issues pertaining to material supply, labor costs, constructability, and project duration. Additionally, approximately 15% more rebar is required because of the overlap. Energy saving for a sustainable built environment is possible if the disadvantage of lap splices, which generate high CO 2 emissions due to the excessive use of rebar, are resolved. Hence, mechanical rebar couplers (MRCs) have been developed. However, despite their advantages, they have not been widely applied in construction sites owing to concerns regarding safety, quality, and constructability. This is because data on MRC, including maintenance, and environmental impact, are not organized, making it difficult to select a coupler suitable for the environment during the construction stage. Therefore, a data-driven approach for selecting MRCs based on the reinforcing bar shape and structural characteristics is proposed in this study. The T-epoxy filled sleeve coupler was found to be the best in terms of seismic performance, durability, corrosion resistance, and long-term performance. In addition, using a data-driven MRC selection algorithm using the T-threaded coupler for one rebar over two floors resulted in 56% more efficient labor productivity, 15% shorter assembly time, 17% lower costs, and 26% lower CO 2 emission. Using a developed algorithm, the appropriate MRC can easily and rapidly be selected for frequent design changes.
Keywords: data-driven approach; algorithm; mechanical rebar coupler; comparative analysis; constructability (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/16/10/4016/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/10/4016/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:10:p:4016-:d:1392205
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().