EconPapers    
Economics at your fingertips  
 

Coupling Global Parameters and Local Flow Optimization of a Pulsed Ejector for Proton Exchange Membrane Fuel Cells

Chao Li, Baigang Sun and Lingzhi Bao ()
Additional contact information
Chao Li: School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
Baigang Sun: School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
Lingzhi Bao: School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

Sustainability, 2024, vol. 16, issue 10, 1-22

Abstract: Proton exchange membrane fuel cells (PEMFCs), as an important utilization of hydrogen energy, contribute to the sustainable development of global energy. Pulsed ejectors have a high potential for improving the hydrogen utilization of PEMFCs in the full operating range by circulating unconsumed hydrogen. In this study, a pulsed ejector applied to a 120 kW fuel cell was designed, and the flow characteristics were analysed using computational fluid dynamics (CFD). Based on the data from the CFD model, the global optimization of the ejector was carried out using the Gaussian process regression (GPR) surrogate model and the grey wolf optimization (GWO) algorithm. The local structure was then further optimized using an adjoint method coupling streamlining modification that takes into account the local flow characteristics. The CFD results showed that, under a fixed structure, increasing the pressure difference between the secondary flow and the ejector outlet would promote boundary layer separation, shorten the shockwave chain length, change the effective flow area of the secondary flow, and lower the entrainment ratio (ER). The analytical results from the GPR model indicated significant interactions among the structural parameters. The globally optimized ejector using GPR and GWO improved the hydrogen entrainment ratio from 1.42 to 3.12 at the design point. Furthermore, the results of streamlining local optimization show that the entrainment ratio increased by 1.67% at the design point and increased by up to 3.99% over the full operating range compared to the optimized ejector by global optimization.

Keywords: PEMFC; pulsed ejector; local flow; gaussian process regression; global optimization; adjoint method (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/10/4170/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/10/4170/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:10:p:4170-:d:1395657

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4170-:d:1395657