EconPapers    
Economics at your fingertips  
 

Effects of Rainfall Intensity and Slope on Infiltration Rate, Soil Losses, Runoff and Nitrogen Leaching from Different Nitrogen Sources with a Rainfall Simulator

Mzwakhile Petros Zakhe Simelane, Puffy Soundy and Martin Makgose Maboko ()
Additional contact information
Mzwakhile Petros Zakhe Simelane: Department of Crop Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
Puffy Soundy: Department of Crop Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
Martin Makgose Maboko: Department of Crop Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa

Sustainability, 2024, vol. 16, issue 11, 1-14

Abstract: The combined effects of slope gradient, rainfall intensity, and nitrogen fertilizer source on infiltration, runoff, soil loss, and nitrogen (N) leaching in agricultural areas are not thoroughly understood, despite their critical importance in sustainable agriculture. Previous studies have focused on these factors individually, leaving a significant gap in knowledge regarding their synergistic impact. Investigating the interplay between slope gradients, rainfall intensities, and N fertilizer sources is vital to developing effective soil and water conservation strategies and implementing sustainable agricultural practices. This study is comprised of two experiments. Experiment 1 was designed as a 3 × 2 × 3 factorial arrangement, incorporating three levels of rainfall intensity (RI) (45, 70, and 100 mm/h), two slope gradients (5 and 8°), and three soil types (sandy loam, silt loam, and clay loam), aimed at assessing runoff, infiltration, and soil loss. Experiment 2, laid out as 3 × 2 × 3 × 3 factorial, expanded on this, adding N fertilizer source (urea, CaCN 2 , and limestone ammonium nitrate (LAN) at 130 kg/ha N) and assessing N leaching alongside the previous metrics. Both experiments used a rotating disc rainfall simulator and were replicated four times. Results revealed that steeper slopes (8°) led to increased runoff and soil loss, impeding infiltration, while gentler slopes (5°) facilitated greater infiltration and minimized soil loss. Rainfall intensity played a significant role, with 70 mm/h/5° combinations promoting higher infiltration rates (48.14 mm/h) and 100 mm/h/8° resulting in lower rates (37.07 mm/h for sandy loam and silt loam, 26.09 mm/h for clay loam). Nitrogen leaching varied based on N source; urea at 130 kg/ha N led to higher losses (7.2% in sandy loam, 6.9% in silt loam, 6.5% in clay loam), followed by LAN (6.9% in sandy loam, 6.7% in silt loam, 6.3% in clay loam) while CaCN 2 at the same rate resulted in lower N losses (6.4% in sandy soil, 4.4% in silt loam, 4.2% in clay soil). This research highlights the critical need to consider both slope gradient and rainfall intensity in conjunction with appropriate nitrogen fertilizer sources when developing strategies to mitigate soil erosion and nutrient loss in agricultural settings.

Keywords: calcium cyanamide; urea; limestone ammonium nitrate; soil type (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/11/4477/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/11/4477/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:11:p:4477-:d:1401538

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4477-:d:1401538