Bioinspired Coastal Barriers: A Preliminary Laboratory Study on the Hydraulic Performances of Shapes Inspired by Marine Organisms
Valentina Perricone,
Pasquale Contestabile (),
Antonio Mele,
Nasrin Hassanpour,
Diego Vicinanza () and
Mario Buono
Additional contact information
Valentina Perricone: Department of Engineering, University of Campania “Luigi Vanvitelli”, 81031 Aversa, Italy
Pasquale Contestabile: Department of Engineering, University of Campania “Luigi Vanvitelli”, 81031 Aversa, Italy
Antonio Mele: Department of Engineering, University of Campania “Luigi Vanvitelli”, 81031 Aversa, Italy
Nasrin Hassanpour: Department of Engineering, University of Campania “Luigi Vanvitelli”, 81031 Aversa, Italy
Diego Vicinanza: Department of Engineering, University of Campania “Luigi Vanvitelli”, 81031 Aversa, Italy
Mario Buono: Department of Engineering, University of Campania “Luigi Vanvitelli”, 81031 Aversa, Italy
Sustainability, 2024, vol. 16, issue 11, 1-18
Abstract:
Coastal erosion, extreme climate events, and the loss of biodiversity are important consequences of climate change that directly impact our society. The needs to develop effective engineering practices using nature as model and mentor are now emerging aimed to develop high-performance coastal infrastructures integrating and sustaining local marine ecosystems. In this scenario, the present article describes the concept development and preliminary experimentation of simplified bioinspired models to evaluate their hydraulic performances. This study is part of a future vision to develop submerged barriers, printed with eco-friendly materials, characterized by high hydraulic performances and cable of supporting local biodiversity. Following a top-down approach, the functional features of key organisms were abstracted and transferred to create three bioinspired models. The hydraulic performance of these models is analyzed in terms of wave transmission, reflection, and dissipation under various wave conditions. Under certain circumstances, the bioinspired barriers demonstrate wave attenuation comparable to traditional submerged breakwaters. A method based on skin friction and drag-related processes provides a simple heuristic explanation of how the shape of the models affect the transmission coefficient. The results achieved offer valuable insights for the design of future coastal defense systems that are inspired by, and integrated with, natural ecosystems.
Keywords: bioinspiration; nature-based solution; coastal protection; barriers; wave transmission (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/16/11/4839/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/11/4839/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:11:p:4839-:d:1409630
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().