Sustainable Catalysts from Industrial FeO Waste for Pyrolysis and Oxidation of Hospital Polypropylene in Cartagena
Joaquín Hernandez-Fernandez (),
Juan Carrascal Sanchez and
Juan Lopez Martinez
Additional contact information
Joaquín Hernandez-Fernandez: Department of Natural and Exact Science, Universidad de la Costa, Barranquilla 30300, Colombia
Juan Carrascal Sanchez: Grupo de Investigación GIA, Fundacion Universitaria Tecnologico Comfenalco, Cr 44 D N 30A, 91, Cartagena 30015, Colombia
Juan Lopez Martinez: Institute of Materials Technology (ITM), Universitat Politecnica de Valencia (UPV), Plaza Ferrandiz and Carbonell s/n, 03801 Alcoy, Alicante, Spain
Sustainability, 2024, vol. 16, issue 14, 1-21
Abstract:
During the COVID-19 pandemic, polypropylene waste generated in hospitals increased significantly. However, conventional strategies for the final disposal of environmental waste, such as incineration, proved inefficient due to the generation of toxic chemical species. In this research, these PP wastes were mixed with 1.5, 20, 150, 200, and 400 mg of iron oxide (FeO), extruded, and pelletized to obtain samples HW-PP-0, HW-PP-1, HW-PP-2, HW-PP-3, and HW-PP-4, respectively. XRF, TGA, and GC-MS characterized these samples. The samples were subjected to pyrolysis and thermo-oxidative degradation with controlled currents of nitrogen and oxygen. The characterization of the gases resulting from pyrolysis was carried out with a GC-MS, where the results showed that HW-PP-0 (mixed with 1.5 mg of FeO) presented the highest concentrations of alkanes (35.65%) and alkenes (63.7%), and the lowest levels of alkynes (0.3%), alcohols (0.12%), ketones (0.04%), and carboxylic acids (0.2%). The opposite was observed with the hospital waste HW-PP-4 (mixed with 400 mg of FeO), which presented the highest levels of alkynes (2.93%), alcohols (28.1%), ketones (9.8%), and carboxylic acids (8%). The effect of FeO on HW-PP-O during thermo-oxidative degradation generated values of alkanes (11%) and alkenes (30%) lower than those during pyrolysis. The results showed the catalytic power of FeO and its linear relationship with concentration. This research proposes the mechanisms that can explain the formation of different functional groups of various molecular weights which allow us to understand the presence of alkanes, alkenes, alkynes, alcohols, ketones, and carboxylic acids.
Keywords: COVID-19; hospital plastic of polypropylene waste; pyrolysis; sustainable catalyst; oxide iron; GC-MS (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/16/14/5934/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/14/5934/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:14:p:5934-:d:1433566
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().