EconPapers    
Economics at your fingertips  
 

An Affordable System Solution for Enhancing Tree Survival in Dry Environments

Hakan Gürsu ()
Additional contact information
Hakan Gürsu: Industrial Design Department, Faculty of Architecture, Middle East Technical University, 06800 Ankara, Turkey

Sustainability, 2024, vol. 16, issue 14, 1-32

Abstract: Water scarcity inhibits plant growth, especially in arid regions. Traditional irrigation methods often lack efficiency and sustainability. This study investigates AquaTrap, a biomimetic design, as a potential solution. The study highlights AquaTrap’s advantages by analyzing its design and previous research on bioinspired water harvesting. It highlights its ability to increase water efficiency and support sustainable plant growth in dry areas. Biomimicry inspires AquaTrap’s design, which mimics natural systems to capture and deliver water to plant roots. To collect condensation while repelling water, the stack uses superhydrophobic materials. Plant roots then receive this accumulated water for growth. Compared to traditional methods, AquaTrap offers many advantages. Its stand-alone design eliminates complex infrastructure and minimizes evaporation. Additionally, delivering water directly to the roots reduces waste and increases water efficiency. This technology holds promise for introducing new vegetation, restoring plant life, and promoting sustainable agriculture in arid regions. Further research is needed to explore the potential of AquaTrap in a variety of field conditions, optimize it for different plants and environments, and evaluate its economic feasibility for widespread use. AquaTrap also has significant potential for sustainable forestry, as it can significantly increase the survival and growth of trees in water-scarce environments. System solution opportunities and modular structure provide crucial support during the most critical adaptation period of afforestation. By reducing water consumption and increasing efficiency, it supports the establishment and maintenance of healthy forests, which are vital for ecosystem resilience and biodiversity.

Keywords: biomimetic eco-solution; water harvesting; arid areas; water conservation; drip irrigation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/14/5994/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/14/5994/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:14:p:5994-:d:1434631

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5994-:d:1434631