EconPapers    
Economics at your fingertips  
 

Analysis of Topological Properties and Robustness of Urban Public Transport Networks

Yifeng Xiao, Zhenghong Zhong and Rencheng Sun ()
Additional contact information
Yifeng Xiao: School of Computer Science and Technology, Qingdao University, Qingdao 266071, China
Zhenghong Zhong: Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S10 2TN, UK
Rencheng Sun: School of Computer Science and Technology, Qingdao University, Qingdao 266071, China

Sustainability, 2024, vol. 16, issue 15, 1-23

Abstract: With the acceleration of urbanization, public transport networks are an important part of urban transport systems, and their robustness is critical for city operation. The objective of this study is to analyze the topological properties and robustness of an urban public transport network (UPTN) with a view to enhancing the sustainability of urbanization. In order to present the topological structure of the UPTN, the L-Space complex network modeling method is used to construct a model. Topological characteristics of the network are calculated. Based on single evaluation indices of station significance, a comprehensive evaluation index is proposed as the basis for selecting critical stations. The UPTN cascading failure model is established. Using the proportion of the maximum connected subgraph as the evaluation index, the robustness of the UPTN is analyzed using different station significance indices and deliberate attack strategies. The public transport network of Xuzhou city is selected for instance analysis. The results show that the UPTN in Xuzhou city has small-world effects and scale-free characteristics. Although the network has poor connectivity, it is a convenient means to travel for residents with many independent communities. The network’s dynamic robustness is demonstrably inferior to its static robustness due to the prevalence of cascading failure phenomena. Specifically, the failure of important stations has a wider impact on the network performance. Improving their load capacity and distributing the routes via them will help bolster the network resistance against contingencies. This study provides a scientific basis and strategic recommendations for urban planners and public transport managers to achieve a more sustainable public transport system.

Keywords: urban public transport network (UPTN); complex network; topological property; cascading failure; robustness (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/15/6527/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/15/6527/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:15:p:6527-:d:1446342

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6527-:d:1446342