Tribological Performance of ZnO Green Particles as Lubricating Oil Additives
Giovanna Gautier di Confiengo (),
Eligio Malusà,
Massimo Guaita,
Silvia Motta,
Mattia Di Maro and
Maria Giulia Faga
Additional contact information
Giovanna Gautier di Confiengo: Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS)—Sede Secondaria di Torino, Consiglio Nazionale delle Ricerche, Strada delle Cacce 73, 10135 Torino, Italy
Eligio Malusà: Consiglio per la Ricerca in Agricoltura e l’Analisi dell’economia Agraria—Centro di Ricerca Viticoltura ed Enologia, via P. Micca 35, 14100 Asti, Italy
Massimo Guaita: Consiglio per la Ricerca in Agricoltura e l’Analisi dell’economia Agraria—Centro di Ricerca Viticoltura ed Enologia, via P. Micca 35, 14100 Asti, Italy
Silvia Motta: Consiglio per la Ricerca in Agricoltura e l’Analisi dell’economia Agraria—Centro di Ricerca Viticoltura ed Enologia, via P. Micca 35, 14100 Asti, Italy
Mattia Di Maro: Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS)—Sede Secondaria di Torino, Consiglio Nazionale delle Ricerche, Strada delle Cacce 73, 10135 Torino, Italy
Maria Giulia Faga: Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS)—Sede Secondaria di Torino, Consiglio Nazionale delle Ricerche, Strada delle Cacce 73, 10135 Torino, Italy
Sustainability, 2024, vol. 16, issue 16, 1-20
Abstract:
ZnO particles, synthesized using a green method, were used as additives to enhance the tribological properties of lubricants. Polyphenolic extracts obtained from by-products of the winemaking process from two grape varieties, Barbera (red berry) and Moscato (white berry), were utilized as reducing agents in the synthesis of ZnO starting from two Zn salts (nitrate and acetate). The grape extracts were analysed for their polyphenolic profile. The ZnO particles were characterized by X-ray diffraction, SEM, FESEM, and FTIR. A ball-on-disk tribometer was used to study the tribological behaviour of the ZnO particles as oil additives in comparison to a reference base oil. Electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to characterise wear scars. Polyphenolic compounds were more abundant in the Moscato extracts than in the Barbera extracts. Although FTIR analyses evidenced differences in the region related to the stretching of carbonyl bonds, all kinds of ZnO particles were crystallised in their pure phase, as shown by the XRD patterns. Morphological analysis revealed that precursors significantly influenced particle size and shape, with acetate producing regular-shaped nanoparticles (50–200 nm) while nitrate produced pyramid-like particles (10–20 μm). Addition of ZnO to oil resulted in a more stable friction coefficient (COF) than the reference oil, with lower values obtained using ZnO particles obtained from acetate compared to nitrate. The addition of the ZnO particles derived from Barbera by-products lowered on average wear values compared to the pure lubricant oil.
Keywords: green synthesis; ZnO; lubrication additives; polyphenolic compounds; circular economy (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/16/16/6810/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/16/6810/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:16:p:6810-:d:1452685
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().