Optimal Electric Vehicle Battery Management Using Q-learning for Sustainability
Pannee Suanpang () and
Pitchaya Jamjuntr
Additional contact information
Pannee Suanpang: Department of Information Technology, Faculty of Science & Technology, Suan Dusit University, Bangkok 10300, Thailand
Pitchaya Jamjuntr: Department of Electronic and Telecommunication, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
Sustainability, 2024, vol. 16, issue 16, 1-50
Abstract:
This paper presents a comprehensive study on the optimization of electric vehicle (EV) battery management using Q-learning, a powerful reinforcement learning technique. As the demand for electric vehicles continues to grow, there is an increasing need for efficient battery-management strategies to extend battery life, enhance performance, and minimize operating costs. The primary objective of this research is to develop and assess a Q-learning-based approach to address the intricate challenges associated with EV battery management. This paper starts by elucidating the key challenges inherent in EV battery management and discusses the potential advantages of incorporating Q-learning into the optimization process. Leveraging Q-learning’s capacity to make dynamic decisions based on past experiences, we introduce a framework that considers state-of-charge, state-of-health, charging infrastructure, and driving patterns as critical state variables. The methodology is detailed, encompassing the selection of state, action, reward, and policy, with the training process informed by real-world data. Our experimental results underscore the efficacy of the Q-learning approach in optimizing battery management. Through the utilization of Q-learning, we achieve substantial enhancements in battery performance, energy efficiency, and overall EV sustainability. A comparative analysis with traditional battery-management strategies is presented to highlight the superior performance of our approach. A comparative analysis with traditional battery-management strategies is presented to highlight the superior performance of our approach, demonstrating compelling results. Our Q-learning-based method achieves a significant 15% improvement in energy efficiency compared to conventional methods, translating into substantial savings in operational costs and reduced environmental impact. Moreover, we observe a remarkable 20% increase in battery lifespan, showcasing the effectiveness of our approach in enhancing long-term sustainability and user satisfaction. This paper significantly enriches the body of knowledge on EV battery management by introducing an innovative, data-driven approach. It provides a comprehensive comparative analysis and applies novel methodologies for practical implementation. The implications of this research extend beyond the academic sphere to practical applications, fostering the broader adoption of electric vehicles and contributing to a reduction in environmental impact while enhancing user satisfaction.
Keywords: optimizing; Q-learning; battery management; electric vehicle; sustainability; enhancing performance; smart city (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2071-1050/16/16/7180/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/16/7180/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:16:p:7180-:d:1460861
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().