EconPapers    
Economics at your fingertips  
 

A Study of Carbon Emissions during the Operational Period of an Integrated Expressway Construction Station

Chao Wang, Xuechun Yao, Kai Ma, Congrui Zhang, Shuaike Dang, Mingxing Fan, Wenjing Luo, Yiliu Zheng, Chao Pan and Gaofeng Ren ()
Additional contact information
Chao Wang: CCCC Construction Group Co., Ltd., Beijing 100022, China
Xuechun Yao: CCCC Construction Group Co., Ltd., Beijing 100022, China
Kai Ma: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
Congrui Zhang: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
Shuaike Dang: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
Mingxing Fan: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
Wenjing Luo: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
Yiliu Zheng: CCCC Construction Group Co., Ltd., Beijing 100022, China
Chao Pan: CCCC Construction Group Co., Ltd., Beijing 100022, China
Gaofeng Ren: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China

Sustainability, 2024, vol. 16, issue 17, 1-16

Abstract: An integrated construction station for an expressway is characterized by complex carbon emission sources and high carbon emission intensity. Conducting carbon emissions accounting makes possible a comprehensive understanding of these characteristics, enabling targeted and guided carbon reduction efforts, which is crucial for advancing the low-carbon development of expressway construction. This paper, based on an in-depth analysis of the carbon emission structure during the operational period of an integrated expressway construction station identifies, as calculation boundaries, eight categories: residential areas, station transportation, mixing stations, precast beams, steel bar yards, artificial carbon emissions, chemical reactions during construction, and construction conditions. The study adopts a “bottom-up” approach to carbon emission measurement and constructs a carbon emission model for the production and operational period of the integrated construction station, based on the carbon emission factor method. Using the SG-2 section of the Fengqiu to Xiuwu stretch of the Changxiu Expressway as an engineering case, carbon emissions accounting for each component of the integrated construction station’s operational period was conducted, and the results were compared with the station’s monitoring system. High-precision characterization and calculation of total carbon emissions, as well as emissions from each process and piece of equipment during the operational period, were achieved. The results indicate that: (1) the relative error between the overall calculation results and actual monitoring is 3.6%, verifying the model’s accuracy; (2) the monthly carbon emissions of the integrated construction station during the operational period reached 72.15 tons; (3) there is a significant difference in carbon emissions among the different processes, with the highest emissions coming from transportation and residential areas, accounting for 43.4% and 23.7%, respectively. Therefore, electrification of transportation equipment could significantly reduce the overall carbon emissions of the integrated construction station.

Keywords: expressway; integrated construction station; operational period; carbon emissions (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/17/7384/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/17/7384/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:17:p:7384-:d:1465289

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7384-:d:1465289