Research on Nondestructive Testing Technology for Drilling Risers Based on Magnetic Memory and Deep Learning
Xiangyuan Liu and
Jianchun Fan ()
Additional contact information
Xiangyuan Liu: College of Safety and Ocean Engineering, China University of Petroleum (Beijing), Beijing 102249, China
Jianchun Fan: College of Safety and Ocean Engineering, China University of Petroleum (Beijing), Beijing 102249, China
Sustainability, 2024, vol. 16, issue 17, 1-23
Abstract:
Drilling risers play a crucial role in deepwater oil and gas development, and any compromise in their integrity can severely hinder the progress of drilling operations. In light of this, efficient and accurate nondestructive testing of drilling risers is paramount. However, existing inspection equipment falls short in both efficiency and accuracy, posing challenges to the sustainability of deepwater oil and gas exploration and development. To effectively assess the damage conditions of deepwater drilling risers, this study developed an inspection robot based on metal magnetic memory and researched intelligent defect recognition methods using computer vision. The robot can perform in situ inspections on drilling risers and has been successfully deployed for field application on a deepwater drilling platform. The application results demonstrate that this detection robot offers significant advantages regarding high reliability and detection efficiency. Utilizing data collected on-site, we constructed a dataset containing 1100 images that cover five typical types of defects in drilling risers, including pitting, groove corrosion, and wear. Based on this dataset, we proposed and trained a novel image classification model, SK-ConvNeXt-KAN. By deeply optimizing the ConvNeXt convolutional network incorporating the introduced SK attention module and replacing traditional linear classification layers with the KAN module, this model significantly enhanced its feature extraction capabilities and efficiency in handling complex nonlinear problems. Experimental results show that this model achieved an accuracy rate of 95.4% in identifying defects in drilling risers, which is significantly better than traditional methods. This achievement has dramatically improved the efficiency and accuracy of deepwater drilling riser inspections, providing robust technical support for deepwater oil and gas exploration and development sustainability.
Keywords: drilling riser; detection robot; metal magnetic memory; ConvNeXt (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/16/17/7389/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/17/7389/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:17:p:7389-:d:1465336
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().