EconPapers    
Economics at your fingertips  
 

Extreme Rainfall Events in July Associated with the Daily Asian-Pacific Oscillation in the Sichuan-Shaanxi Region of China

Rongwei Liao (), Ge Liu, Yangna Lei () and Yuzhou Zhu
Additional contact information
Rongwei Liao: State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Ge Liu: State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Yangna Lei: Shaanxi Climate Center, Xi’an 710014, China
Yuzhou Zhu: Henan Meteorological Service Center, Zhengzhou 450003, China

Sustainability, 2024, vol. 16, issue 17, 1-17

Abstract: Rainfall variability and its underlying physical mechanisms are crucial for improving the predictive accuracy of July rainfall patterns in the Sichuan-Shaanxi (SS) region of Southwestern China. This study utilized observational 24 h accumulated rainfall data from China in conjunction with reanalysis products sourced from the European Centre for Medium-Range Weather Forecasts (ECMWF). The purpose of this study was to elucidate the relationship between daily variations in the daily Asian-Pacific Oscillation (APO), atmospheric circulation, and daily rainfall patterns in the SS region, and to evaluate the impact of atmospheric circulation anomalies on these relationships. The results reveal a discernible intensification in the sea–land thermal contrast associated with atmospheric circulation anomalies transitioning from the daily extremely low APO (ELA) to the extremely high APO (EHA) days. These conditions lead to an increased presence of water vapor and widespread anomalies in rainfall that exceed normal levels in the SS region. Concurrently, the increase in stations experiencing extreme rainfall events (EREs) accounts for 21.3% of the overall increase in stations experiencing rainfall. The increase in rainfall amount contributed by EREs (RA-EREs) accounts for 73.5% of the overall increase in the total rainfall amount (TRA) across the SS region. Specifically, heavy rainfall (HR) and downpour rainfall (DR) during EREs accounted for 65.7% (HR) and 95.3% (DR) of the overall increase in the TRA, respectively. Relative to the ELA days, there was a substantial 122.6% increase in the occurrence frequency of EREs and a 23.3% increase in their intensity. The study suggests that the daily APO index emerges as a better indicator of July rainfall events in the SS region, with EREs significantly contributing to the overall increase in rainfall in this region. These findings indicate the importance of improving predictive capabilities for daily variability in the APO index and their correlation with rainfall events in the SS region. The results may inform the development of effective adaptation and mitigation strategies to manage the potential impacts of EREs on agriculture, water resources, sustainable development, and infrastructure in the region.

Keywords: extreme rainfall events; daily APO index; rainfall amount; rainfall classification (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/17/7733/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/17/7733/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:17:p:7733-:d:1472152

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7733-:d:1472152