EconPapers    
Economics at your fingertips  
 

Simulation of Spatial and Temporal Variations in the Water Yield Function in the Source Area of the Yellow River and an Analysis of Influencing Factors

Meijuan Liu, Juntao Zhong () and Shiyu Xu
Additional contact information
Meijuan Liu: College of Geographic Sciences, Qinghai Normal University, Xining 810008, China
Juntao Zhong: College of Surveying and Mapping Science and Technology, Xi’an University of Science and Technology, Xi’an 710054, China
Shiyu Xu: College of Geographic Sciences, Qinghai Normal University, Xining 810008, China

Sustainability, 2024, vol. 16, issue 18, 1-24

Abstract: The Yellow River source area is an important eco-fragile and sensitive zone in the northeast of the Tibetan Plateau, where anthropogenic disturbances, climate change, and environmental problems have negatively affected the amount of water in the basin, which directly impacts the ecological security and high-quality sustainable development of the Yellow River Basin. Therefore, this study takes the Yellow River source area as its research area. Based on eight periods of land use from 1985 to 2020, topographic, soil, and meteorological data are combined, and a locally modified InVEST model and geological detector method are used to simulate watershed water production, evaluate the spatial differentiation characteristics of watershed water production, and analyze its spatial heterogeneity attribution. The results revealed that water production from 1985 to 2020 varied within the interval of 152.08–302.44 billion m 3 , with alternating decreases and increases and an overall upward trend. In the spatial distribution, the depth of water production is high in the east and low in the west, and the high-water-production area is concentrated in the counties of Maqin and Gande. In the vertical gradient, the water production capacity is strengthened with increasing altitudes. The spatial differentiation of the water production service and degree of influence is jointly determined by multiple factors. In this work, the parameter Z of the InVEST model was locally corrected to increase the applicability of the Z value to the Yellow River Basin to improve the accuracy of the simulation results, and the spatiotemporal differences in water yield from multiple perspectives were analyzed to provide a scientific basis for the ecological protection and high-quality sustainable development of the Yellow River Basin.

Keywords: water yield; InVEST model; geographical detectors; source area of the Yellow River (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/18/8259/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/18/8259/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:18:p:8259-:d:1483563

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8259-:d:1483563