EconPapers    
Economics at your fingertips  
 

Intelligent Control Framework for Improving Energy System Stability Through Deep Learning-Based Modal Optimization Scheme

Arman Fathollahi ()
Additional contact information
Arman Fathollahi: Department of Electrical and Computer Engineering, Aarhus University, 8200 Aarhus, Denmark

Sustainability, 2024, vol. 16, issue 21, 1-18

Abstract: Ensuring the stability of power systems is essential to promote energy sustainability. The integrated operation of these systems is critical in sustaining modern societies and economies, responding to the increasing demand for electricity and curbing environmental consequences. This study focuses on the optimization of energy system stability through the coordination of power system stabilizers (PSSs) and power oscillation dampers (PODs) in a single-machine infinite bus energy grid configuration that has flexible AC alternating current transmission system (FACTS) devices. Intelligent control strategies using PSS and POD techniques are suggested to increase power system stability and generate supplementary control signals for both the generator excitation system and FACTS device switching control. An intelligent optimal modal control framework equipped with deep learning methods is introduced to control the generator excitation system and thyristor-controlled series capacitor (TCSC). By optimally choosing the weighting matrix Q and implementing close-loop pole shifting, an optimal modal control approach is formulated. To harness its adaptive potential in fine-tuning controller parameters, an auxiliary deep learning-based optimization algorithm with actor–critic architecture is implemented. This comprehensive technique provides a promising path to effectively reduce electromechanical oscillations, thereby enhancing voltage regulation and transient stability in power systems.

Keywords: energy sustainability; power system stability; deep reinforcement learning; artificial intelligence; power system stabilizers; TCSC; FACTS; mathematical modeling (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/21/9392/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/21/9392/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:21:p:9392-:d:1509278

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9392-:d:1509278