EconPapers    
Economics at your fingertips  
 

High Desertification Susceptibility in Forest Ecosystems Revealed by the Environmental Sensitivity Area Index (ESAI)

Ebru Gül () and Serhat Esen
Additional contact information
Ebru Gül: Department of Soil Science and Ecology, Faculty of Forestry, Çankırı Karatekin University, 18200 Çankırı, Türkiye
Serhat Esen: Graduate School of Natural and Applied Sciences, Çankırı Karatekin University, 18200 Çankırı, Türkiye

Sustainability, 2024, vol. 16, issue 23, 1-21

Abstract: This study evaluated the desertification vulnerability of an Anatolian black pine forest in Türkiye using the Environmental Sensitivity Area Index (ESAI). Desertification Risk (DR) and ESAI values were calculated for 90 sampling plots, incorporating key indicators such as vegetation cover, soil depth, rock fragment presence, soil texture, slope gradient, parent material, mean annual precipitation, aridity index, land use intensity, and policy enforcement. These indicators were processed through the Desertification Indicator System for Mediterranean Europe (DIS4ME). Spatial patterns of DR and ESAI were analysed using semivariograms and Kriging-interpolated maps. The mean DR (4.850; range = 2.310–8.090) and ESAI (1.46; range = 1.390–1.580) values indicated significant vulnerability to desertification. DR showed moderate spatial dependence, while ESAI exhibited strong spatial dependence. Ordinary kriging maps revealed critical desertification hotspots within the forest. ESAI values varied with soil organic matter (SOM) content, which was moderately and significantly correlated with ESAI ( n = 90, r = −0.58, p < 0.01). These findings provide actionable insights for sustainable land management. Interventions such as improving SOM content through afforestation, enhancing soil conservation practices, and promoting sustainable water use are critical to mitigating desertification and fostering ecosystem resilience. This study identifies high-risk areas and demonstrates how DR and ESAI can guide targeted strategies to restore degraded lands and ensure forest sustainability. This aligns with SDG 15 (Life on Land), which emphasizes the need to combat desertification, restore degraded ecosystems, and promote the sustainable management of forests. Integrating ESAI into regional policy planning highlights its potential as a practical tool for achieving long-term environmental and socioeconomic sustainability in vulnerable forest ecosystems like those in Türkiye.

Keywords: DIS4ME; desertification indicator; geostatistic; risk map; modelling; land degradation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/23/10409/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/23/10409/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:23:p:10409-:d:1531371

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10409-:d:1531371