EconPapers    
Economics at your fingertips  
 

Computational Approach towards Repetitive Design Tasks: The Case Study of Parking Lot Automated Design

Jan Cudzik () and Michał Nessel
Additional contact information
Jan Cudzik: Department of Urban Architecture and Waterscapes, Faculty of Architecture, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland
Michał Nessel: Department of Descriptive Geometry and Digital Technologies, Faculty of Architecture, Cracow University of Technology, 24 Warszawska Street, 31-155 Krakow, Poland

Sustainability, 2024, vol. 16, issue 2, 1-16

Abstract: The study aims to develop and assess an algorithm for efficiently generating parking spot layouts within predefined area outlines. The algorithm is an attempt to streamline the decision-making process by producing different design variants and optimizing the utilization of available space. The algorithm’s primary objective is to streamline decision-making by generating diverse design variants while optimizing the use of available space, with a distinct focus on mitigating environmental impact and fostering ecological well-being. Researchers conduct thorough tests on the algorithm across various outlines, resulting in multiple layout options for each scenario. They analyzed five representative parking locations and compare the algorithm’s results with the existing parking spot layouts. Throughout the evaluation process, they consider quantitative and qualitative data, considering the complexities of communication solutions within each context. The study findings indicate that the algorithm demonstrates comparable or superior performance to existing solutions. Overall, the study highlights the promising potential of algorithmic design approaches in the context of parking lot automated design. Achieving a balance between innovative designs and user-friendly layouts is crucial, and this is achievable by conducting comprehensive analyses that consider various factors. The consistent findings underscore the algorithm’s potential to significantly contribute to sustainable design practices in parking lot layouts, highlighting decreased environmental strain, efficient land use, and creating urban spaces that prioritize ecological benefits. Furthermore, seamlessly integrating algorithmic solutions with existing communication systems is paramount to ensure practical applicability in real-world scenarios. This integration will enable more effective and practical implementation of the algorithm’s outputs in actual parking lot design projects.

Keywords: generative design; town planning; urban development; road network; design automation; sustainable design (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/2/592/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/2/592/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:2:p:592-:d:1316161

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:592-:d:1316161