EconPapers    
Economics at your fingertips  
 

An Urban Metro Section Flow Forecasting Method Combining Time Series Decomposition and a Generative Adversarial Network

Maosheng Li and Chen Zhang ()
Additional contact information
Maosheng Li: School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China
Chen Zhang: Smart Transportation Key Laboratory of Hunan Province, Central South University, No. 22 South Shaoshan Road, Changsha 410075, China

Sustainability, 2024, vol. 16, issue 2, 1-19

Abstract: Urban metro cross-section flow is the passenger flow that travels through a metro section. Its volume is a critical parameter for planning operation diagrams and improving the service quality of urban subway systems. This makes it possible to better plan the drive for the sustainable development of a city. This paper proposes an improved model for predicting urban metro section flow, combining time series decomposition and a generative adversarial network. First, an urban metro section flow sequence is decomposed using EMD (Empirical Mode Decomposition) into several IMFs (Intrinsic Mode Functions) and a trend function. The sum of all the IMF components is treated as the periodic component, and the trend function is considered the trend component, which are fitted by Fourier series function and spline interpolation, respectively. By subtracting the sum of the periodic and trend components from the urban metro section flow sequence, the error is regarded as the residual component. Finally, a GAN (generative adversarial network) based on the fusion graph convolutional neural network is used to predict the new residual component, which considers the spatial correlation between different sites of urban metro sections. The Chengdu urban metro system data in China show that the proposed model, through incorporating EMD and a generative adversarial network, achieves a 15–20% improvement in prediction accuracy at the cost of a 10% increase in the calculation time, meaning it demonstrates good prediction accuracy and reliability.

Keywords: short-term section flow prediction; time series decomposition; countermeasure neural network; graph convolutional neural network (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/2/607/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/2/607/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:2:p:607-:d:1316585

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:607-:d:1316585